The Arabidopsis protein DELAY OF GERMINATION 1 (DOG1) is a key regulator of seed dormancy, which is a life history trait that determines the timing of seedling emergence. The amount of DOG1 protein in freshly harvested seeds determines their dormancy level. DOG1 has been identified as a major dormancy QTL and variation in DOG1 transcript levels between accessions contributes to natural variation for seed dormancy. The DOG1 gene is alternatively spliced. Alternative splicing increases the transcriptome and proteome diversity in higher eukaryotes by producing transcripts that encode for proteins with altered or lost function. It can also generate tissue specific transcripts or affect mRNA stability. Here we suggest a different role for alternative splicing of the DOG1 gene. DOG1 produces five transcript variants encoding three protein isoforms. Transgenic dog1 mutant seeds expressing single DOG1 transcript variants from the endogenous DOG1 promoter did not complement because they were non-dormant and lacked DOG1 protein. However, transgenic plants overexpressing single DOG1 variants from the 35S promoter could accumulate protein and showed complementation. Simultaneous expression of two or more DOG1 transcript variants from the endogenous DOG1 promoter also led to increased dormancy levels and accumulation of DOG1 protein. This suggests that single isoforms are functional, but require the presence of additional isoforms to prevent protein degradation. Subsequently, we found that the DOG1 protein can bind to itself and that this binding is required for DOG1 function but not for protein accumulation. Natural variation for DOG1 binding efficiency was observed among Arabidopsis accessions and contributes to variation in seed dormancy.
References
[1]
Zhu M, Schlueter SD, Brendel V (2003) Refined annotation of the Arabidopsis genome by complete expressed sequence tag mapping. Plant Physiol 132: 469–484. pmid:12805580 doi: 10.1104/pp.102.018101
[2]
Marquez Y, Brown JWS, Simpson C, Barta A, Kalyna M (2012) Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 22: 1184–1195. doi: 10.1101/gr.134106.111. pmid:22391557
[3]
McGlincy NJ, Smith CW (2008) Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense? Trends Biochem Sci 33: 385–393. doi: 10.1016/j.tibs.2008.06.001. pmid:18621535
[4]
Reddy ASN, Marquez Y, Kalyna M, Barta A (2013) Complexity of the alternative splicing landscape in plants. Plant Cell 25: 3657–3683. doi: 10.1105/tpc.113.117523. pmid:24179125
[5]
Carvalho RF, Feij?o CV, Duque P (2012) On the physiological significance of alternative splicing events in higher plants. Protoplasma 250: 639–950. doi: 10.1007/s00709-012-0448-9. pmid:22961303
[6]
Reddy ASN (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58: 267–294. pmid:17222076 doi: 10.1146/annurev.arplant.58.032806.103754
[7]
Staiger D, Brown JWS (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25: 3640–3656. doi: 10.1105/tpc.113.113803. pmid:24179132
[8]
Syed NH, Kalyna M, Marquez Y, Barta A, Brown JWS (2012) Alternative splicing in plants—coming of age. Trends Plant Sci 17: 616–623. doi: 10.1016/j.tplants.2012.06.001. pmid:22743067
[9]
Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4: 1251–1261. pmid:1359917 doi: 10.2307/3869411
[10]
Sugliani M, Brambilla V, Clerkx EJM, Koornneef M, Soppe WJJ (2010) The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis. Plant Cell 22: 1936–1946. doi: 10.1105/tpc.110.074674. pmid:20525852
[11]
Penfield S, Josse EM, Halliday KJ (2010) A role for an alternative splice variant of PIF6 in the control of Arabidopsis primary seed dormancy. Plant Mol Biol 73: 89–95. doi: 10.1007/s11103-009-9571-1. pmid:19911288
[12]
Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171: 501–523. pmid:16866955 doi: 10.1111/j.1469-8137.2006.01787.x
Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59: 387–415. doi: 10.1146/annurev.arplant.59.032607.092740. pmid:18257711
[15]
Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJJ (2012) Molecular mechanisms of seed dormancy. Plant Cell Environ 35: 1769–1786. doi: 10.1111/j.1365-3040.2012.02542.x. pmid:22620982
[16]
Alonso-Blanco C, Bentsink L, Hanhart CJ, Blankestijn-de Vries H, Koornneef M (2003) Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164: 711–729. pmid:12807791 doi: 10.1079/9780851994475.0365
[17]
Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA 103: 17042–17047. pmid:17065317 doi: 10.1073/pnas.0607877103
[18]
Nakabayashi K, Bartsch M, Xiang Y, Miatton E, Pellengahr S, Yano R, et al. (2012) The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION 1 protein levels in freshly harvested seeds. Plant Cell 24: 2826–2838. doi: 10.1105/tpc.112.100214. pmid:22829147
[19]
Chiang GCK, Bartsch M, Barua D, Nakabayashi K, Debieu M, Kronholm I, et al. (2011) DOG1 expression is predicted by the seed-maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana. Mol Ecol 20: 3336–3349. doi: 10.1111/j.1365-294X.2011.05181.x. pmid:21740475
[20]
Kendall SL, Hellwege A, Marriot P, Whalley C, Graham IA, Penfield S (2011) Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell 23: 2568–2580. doi: 10.1105/tpc.111.087643. pmid:21803937
[21]
Footitt S, Douterelo-Soler I, Clay H, Finch-Savage WE (2011) Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proc Natl Acad Sci USA 108: 20236–20241. doi: 10.1073/pnas.1116325108. pmid:22128331
[22]
Graeber K, Linkies A, Steinbrecher T, Mummenhoff K, Tarkowská D, Ture?ková V, et al. (2014) DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proc Natl Acad Sci USA 111: E3571–E3580. doi: 10.1073/pnas.1403851111. pmid:25114251
[23]
Ashikawa I, Mori M, Nakamura S, Abe F (2014) A transgenic approach to controlling wheat seed dormancy level by using Triticeae DOG1-like genes. Transgenic Res 23: 621–629. doi: 10.1007/s11248-014-9800-5. pmid:24752830
[24]
Liu Y, Geyer R, van Zanten M, Carles A, Li Y, H?rold A, et al. (2011) Identification of the Arabidopsis REDUCED DORMANCY 2 gene uncovered a role for the Polymerase Associated Factor 1 Complex in seed dormancy. PLoS ONE 6: e22241. doi: 10.1371/journal.pone.0022241. pmid:21799800
[25]
Mortensen SA, S?nderk?r M, Lynggaard C, Grasser M, Nielsen KL, Grasser KD (2011) Reduced expression of the DOG1 gene in Arabidopsis mutant seeds lacking the transcript elongation factor TFIIS. FEBS Lett 585: 1929–1933. doi: 10.1016/j.febslet.2011.04.077. pmid:21569772
[26]
Liu Y, Koornneef M, Soppe WJJ (2007) The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell 19: 433–444. pmid:17329563 doi: 10.1105/tpc.106.049221
[27]
Dolata J, Guo Y, Ko?owerzo A, Smoliński D, Brzy?ek G, Jarmo?owski A, et al. (2015) NTR1 is required for transcription elongation checkpoints at alternative exons in Arabidopsis. EMBO J 34: 544–558. doi: 10.15252/embj.201489478. pmid:25568310
[28]
Bentsink L, Hanson J, Hanhart CJ, Blankestijn-de Vries H, Coltrane C, Keizer P, et al. (2010) Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proc Natl Acad Sci USA 107: 4264–4269. doi: 10.1073/pnas.1000410107. pmid:20145108
[29]
Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, et al. (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8‘-hydroxylases: Key enzymes in ABA catabolism. EMBO J 23: 1647–1656. pmid:15044947 doi: 10.1038/sj.emboj.7600121
[30]
Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, et al. (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104: 34–41. pmid:17697981 doi: 10.1263/jbb.104.34
[31]
Uhrig J, Mutondo M, Zimmermann I, Deeks MJ, Machesky LM, Thomas P, et al. (2007) The role of Arabidopsis SCAR genes in ARP2-ARP3-dependent cell morphogenesis. Development 134: 967–977. pmid:17267444 doi: 10.1242/dev.02792
[32]
Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by novel type of Agrobacterium binary vector. Mol Gen Genet 204: 383–396. doi: 10.1007/bf00331014
[33]
Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: A versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42: 819–832. pmid:10890530 doi: 10.1023/a:1006496308160
[34]
Clough SJ, Bent AF (1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743. pmid:10069079 doi: 10.1046/j.1365-313x.1998.00343.x
[35]
Wu A-J, Andriotis VME, Durrant MC, Rathjen JP (2004) A patch of surface-exposed residues mediates negative regulation of immune signaling by tomato Pto kinase. Plant Cell 16: 2809–2821. pmid:15367718 doi: 10.1105/tpc.104.024141
[36]
James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for high efficient two-hybrid selection in yeast. Genetics 144: 1425–1436. pmid:8978031
[37]
Gietz RD, Triggs-Raine B, Robbins A, Graham KC, Wodds RA (1997) Identification of proteins that interact with a protein of interest: applications of the yeast-two-hybrid system. Mol Cell Biochem 172: 67–79. pmid:9278233 doi: 10.1007/978-1-4615-6353-2_7
[38]
Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J, et al. (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43: 956–963. doi: 10.1038/ng.911. pmid:21874002
[39]
Wijnker E, James GV, Ding J, Becker F, Klasen JR, Rawat V, et al. (2013) The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana. eLIFE 2: e01426. doi: 10.7554/eLife.01426. pmid:24347547