[1] | Henry M, Borland CZ, Bossie M, Silver PA (1996) Potential RNA binding proteins in Saccharomyces cerevisiae identified as suppressors of temperature-sensitive mutations in NPL3. Genetics 142: 103–115. pmid:8770588
|
[2] | Russell I, Tollervey D (1995) Yeast Nop3p has structural and functional similarities to mammalian pre-mRNA binding proteins. Eur J Cell Biol 66: 293–301. pmid:7774613
|
[3] | Kress TL, Krogan NJ, Guthrie C (2008) A single SR-like protein, Npl3, promotes pre-mRNA splicing in budding yeast. Mol Cell 32: 727–734. doi: 10.1016/j.molcel.2008.11.013. pmid:19061647
|
[4] | Bucheli ME, Buratowski S (2005) Npl3 is an antagonist of mRNA 3' end formation by RNA polymerase II. EMBO J 24: 2150–2160. pmid:15902270 doi: 10.1038/sj.emboj.7600687
|
[5] | Estrella LA, Wilkinson MF, Gonzalez CI (2009) The shuttling protein Npl3 promotes translation termination accuracy in Saccharomyces cerevisiae. J Mol Biol 394: 410–422. doi: 10.1016/j.jmb.2009.08.067. pmid:19733178
|
[6] | Santos-Pereira JM, Herrero AB, García-Rubio ML, Marín A, Moreno S, et al. (2013) The Npl3 hnRNP prevents R-loop-mediated transcription–replication conflicts and genome instability. Genes Dev 27: 2445–2458. doi: 10.1101/gad.229880.113. pmid:24240235
|
[7] | Wong C-M, Tang H-MV, Kong K-YE, Wong G-WO, Qiu H, et al. (2010) Yeast arginine methyltransferase Hmt1p regulates transcription elongation and termination by methylating Npl3p. Nucleic Acids Res 38: 2217–2228. doi: 10.1093/nar/gkp1133. pmid:20053728
|
[8] | Moehle EA, Ryan CJ, Krogan NJ, Kress TL, Guthrie C (2012) The yeast SR-like protein Npl3 links chromatin modification to mRNA processing. PLoS Genet 8: e1003101. doi: 10.1371/journal.pgen.1003101. pmid:23209445
|
[9] | Kuehner JN, Pearson EL, Moore C (2011) Unravelling the means to an end: RNA polymerase II transcription termination. Nat Rev Mol Cell Biol 12: 283–294. doi: 10.1038/nrm3098. pmid:21487437
|
[10] | Mischo HE, Proudfoot NJ (2013) Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. Biochim Biophys Acta 1829: 174–185. doi: 10.1016/j.bbagrm.2012.10.003. pmid:23085255
|
[11] | Bucheli ME, He X, Kaplan CD, Moore CL, Buratowski S (2007) Polyadenylation site choice in yeast is affected by competition between Npl3 and polyadenylation factor CFI. RNA 13: 1756–1764. pmid:17684230 doi: 10.1261/rna.607207
|
[12] | Arigo JT, Eyler DE, Carroll KL, Corden JL (2006) Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol Cell 23: 841–851. pmid:16973436 doi: 10.1016/j.molcel.2006.07.024
|
[13] | Thiebaut M, Kisseleva-Romanova E, Rougemaille M, Boulay J, Libri D (2006) Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the Nrd1-Nab3 pathway in genome surveillance. Mol Cell 23: 853–864. pmid:16973437 doi: 10.1016/j.molcel.2006.07.029
|
[14] | Vasiljeva L, Buratowski S (2006) Nrd1 Interacts with the Nuclear Exosome for 3' Processing of RNA Polymerase II Transcripts. Mol Cell 21: 239–248. pmid:16427013 doi: 10.1016/j.molcel.2005.11.028
|
[15] | Carroll KL, Ghirlando R, Ames JM, Corden JL (2007) Interaction of yeast RNA-binding proteins Nrd1 and Nab3 with RNA polymerase II terminator elements. RNA 13: 361–373. pmid:17237360 doi: 10.1261/rna.338407
|
[16] | Creamer TJ, Darby MM, Jamonnak N, Schaughency P, Hao H, et al. (2011) Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1. PLoS Genet 7: e1002329. doi: 10.1371/journal.pgen.1002329. pmid:22028667
|
[17] | Webb S, Hector RD, Kudla G, Granneman S (2014) PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast. Genome Biol 15: R8. doi: 10.1186/gb-2014-15-1-r8. pmid:24393166
|
[18] | Schulz D, Schwalb B, Kiesel A, Baejen C, Torkler P, et al. (2013) Transcriptome Surveillance by Selective Termination of Noncoding RNA Synthesis. Cell 155: 1075–1087. doi: 10.1016/j.cell.2013.10.024. pmid:24210918
|
[19] | Steinmetz EJ, Warren CL, Kuehner JN, Panbehi B, Ansari AZ, et al. (2006) Genome-Wide Distribution of Yeast RNA Polymerase II and Its Control by Sen1 Helicase. Mol Cell 24: 735–746. pmid:17157256 doi: 10.1016/j.molcel.2006.10.023
|
[20] | Grzechnik P, Kufel J (2008) Polyadenylation linked to transcription termination directs the processing of snoRNA precursors in yeast. Mol Cell 32: 247–258. doi: 10.1016/j.molcel.2008.10.003. pmid:18951092
|
[21] | Fasken MB, Laribee RN, Corbett AH (2015) Nab3 Facilitates the Function of the TRAMP Complex in RNA Processing via Recruitment of Rrp6 Independent of Nrd1. PLoS Genet 11: e1005044. doi: 10.1371/journal.pgen.1005044. pmid:25775092
|
[22] | Tudek A, Porrua O, Kabzinski T, Lidschreiber M, Kubicek K, et al. (2014) Molecular Basis for Coordinating Transcription Termination with Noncoding RNA Degradation. Mol Cell 55: 467–481. doi: 10.1016/j.molcel.2014.05.031. pmid:25066235
|
[23] | Vanacova S, Wolf J, Martin G, Blank D, Dettwiler S, et al. (2005) A New Yeast Poly(A) Polymerase Complex Involved in RNA Quality Control. PLoS Biol 3: e189. pmid:15828860 doi: 10.1371/journal.pbio.0030189
|
[24] | LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E, et al. (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 21: 713–724. doi: 10.1016/j.cell.2005.04.029
|
[25] | Falk S, Weir John R, Hentschel J, Reichelt P, Bonneau F, et al. (2014) The Molecular Architecture of the TRAMP Complex Reveals the Organization and Interplay of Its Two Catalytic Activities. Mol Cell 55: 856–867. doi: 10.1016/j.molcel.2014.07.020. pmid:25175027
|
[26] | Callahan KP, Butler JS (2010) TRAMP complex enhances RNA degradation by the nuclear exosome component Rrp6. J Biol Chem 285: 3540–3547. doi: 10.1074/jbc.M109.058396. pmid:19955569
|
[27] | Kim M, Vasiljeva L, Rando OJ, Zhelkovsky A, Moore C, et al. (2006) Distinct pathways for snoRNA and mRNA termination. Mol Cell 24: 723–734. pmid:17157255 doi: 10.1016/j.molcel.2006.11.011
|
[28] | Lemay JF, D'Amours A, Lemieux C, Lackner DH, St-Sauveur VG, et al. (2010) The nuclear poly(A)-binding protein interacts with the exosome to promote synthesis of noncoding small nucleolar RNAs. Mol Cell 37: 34–45. doi: 10.1016/j.molcel.2009.12.019. pmid:20129053
|
[29] | Fatica A, Morlando M, Bozzoni I (2000) Yeast snoRNA accumulation relies on a cleavage-dependent/polyadenylation-independent 3'-processing apparatus. EMBO J 19: 6218–6229. pmid:11080167 doi: 10.1093/emboj/19.22.6218
|
[30] | Castelnuovo M, Rahman S, Guffanti E, Infantino V, Stutz F, et al. (2013) Bimodal expression of PHO84 is modulated by early termination of antisense transcription. Nat Struct Mol Biol 20: 851–858. doi: 10.1038/nsmb.2598. pmid:23770821
|
[31] | Fox MJ, Gao H, Smith-Kinnaman WR, Liu Y, Mosley AL (2015) The Exosome Component Rrp6 Is Required for RNA Polymerase II Termination at Specific Targets of the Nrd1-Nab3 Pathway. PLoS Genet 10: e1004999. doi: 10.1371/journal.pgen.1004999
|
[32] | Lemay J-F, Larochelle M, Marguerat S, Atkinson S, B?hler J, et al. (2014) The RNA exosome promotes transcription termination of backtracked RNA polymerase II. Nat Struct Mol Biol 21: 919–926. doi: 10.1038/nsmb.2893. pmid:25240800
|
[33] | Shah S, Wittmann S, Kilchert C, Vasiljeva L (2014) lncRNA recruits RNAi and the exosome to dynamically regulate pho1 expression in response to phosphate levels in fission yeast. Genes & Development 28: 231–244. doi: 10.1101/gad.230177.113
|
[34] | Vasiljeva L, Kim M, Mutschler H, Buratowski S, Meinhart A (2008) The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat Struct Mol Biol 15: 795–804. doi: 10.1038/nsmb.1468. pmid:18660819
|
[35] | Gudipati RK, Villa T, Boulay J, Libri D (2008) Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice. Nat Struct Mol Biol 15: 786–794. doi: 10.1038/nsmb.1460. pmid:18660821
|
[36] | Terzi N, Churchman LS, Vasiljeva L, Weissman J, Buratowski S (2011) H3K4 trimethylation by Set1 promotes efficient termination by the Nrd1-Nab3-Sen1 pathway. Mol Cell Biol 31: 3569–3583. doi: 10.1128/MCB.05590-11. pmid:21709022
|
[37] | Tuck AC, Tollervey D (2013) A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs. Cell 154: 996–1009. doi: 10.1016/j.cell.2013.07.047. pmid:23993093
|
[38] | Churchman LS, Weissman JS (2011) Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469: 368–373. doi: 10.1038/nature09652. pmid:21248844
|
[39] | Neil H, Malabat C, d/'Aubenton-Carafa Y, Xu Z, Steinmetz LM, et al. (2009) Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature. doi: 10.1038/nature07747
|
[40] | Baejen C, Torkler P, Gressel S, Essig K, S?ding J, et al. (2014) Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition. Mol Cell 55: 745–757. doi: 10.1016/j.molcel.2014.08.005. pmid:25192364
|
[41] | Granneman S, Kudla G, Petfalski E, Tollervey D (2009) Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high throughput analysis of cDNAs. Proc Natl Acad Sci USA 106: 9613–9818. doi: 10.1073/pnas.0901997106. pmid:19482942
|
[42] | Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Brown PO (2008) Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 6: e255. doi: 10.1371/journal.pbio.0060255. pmid:18959479
|
[43] | Kim Guisbert K, Duncan K, Li HAO, Guthrie C (2005) Functional specificity of shuttling hnRNPs revealed by genome-wide analysis of their RNA binding profiles. RNA 11: 383–393. pmid:15703440 doi: 10.1261/rna.7234205
|
[44] | Granovskaia MV, Jensen LJ, Ritchie ME, Toedling J, Ning Y, et al. (2010) High-resolution transcription atlas of the mitotic cell cycle in budding yeast. Genome Biology 11: R24–R24. doi: 10.1186/gb-2010-11-3-r24. pmid:20193063
|
[45] | Yassour M, Pfiffner J, Levin JZ, Adiconis X, Gnirke A, et al. (2010) Strand-specific RNA sequencing reveals extensive regulated long antisense transcripts that are conserved across yeast species. Genome Biology 11: R87–R87. doi: 10.1186/gb-2010-11-8-r87. pmid:20796282
|
[46] | Deka P, Bucheli ME, Moore C, Buratowski S, Varani G (2008) Structure of the yeast SR protein Npl3 and Interaction with mRNA 3'-end processing signals. J Mol Biol 375: 136–150. pmid:18022637 doi: 10.1016/j.jmb.2007.09.029
|
[47] | Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, et al. (2003) Global analysis of protein expression in yeast. Nature 425: 737–741. pmid:14562106 doi: 10.1038/nature02046
|
[48] | Prescott EM, Proudfoot NJ (2002) Transcriptional collision between convergent genes in budding yeast. Proc Natl Acad Sci USA 99: 8796–8801. pmid:12077310 doi: 10.1073/pnas.132270899
|
[49] | Thiebaut M, Colin J, Neil H, Jacquier A, Seraphin B, et al. (2008) Futile cycle of transcription initiation and termination modulates the response to nucleotide shortage in S. cerevisiae. Mol Cell 31: 671–682. doi: 10.1016/j.molcel.2008.08.010. pmid:18775327
|
[50] | Chanfreau G (2003) Conservation of RNase III Processing Pathways and Specificity in Hemiascomycetes. Eukaryotic Cell 2: 901–909. pmid:14555472 doi: 10.1128/ec.2.5.901-909.2003
|
[51] | Chanfreau G, Elela SA, Ares M Jr., Guthrie C (1997) Alternative 3'-end processing of U5 snRNA by RNase III. Genes Dev 11: 2741–2751. pmid:9334335 doi: 10.1101/gad.11.20.2741
|
[52] | Chanfreau G, Legrain P, Jacquier A (1998) Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism. J Mol Biol 284: 975–988. pmid:9837720 doi: 10.1006/jmbi.1998.2237
|
[53] | Seipelt RL, Zheng B, Asuru A, Rymond BC (1999) U1 snRNA is cleaved by RNase III and processed through an Sm site- dependent pathway. Nucleic Acids Res 27: 587–595. pmid:9862984 doi: 10.1093/nar/27.2.587
|
[54] | Chanfreau G, Rotondo G, Legrain P, Jacquier A (1998) Processing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1. EMBO J 17: 3726–3737. pmid:9649442
|
[55] | Giorgi C, Fatica A, Nagel R, Bozzoni I (2001) Release of U18 snoRNA from its host intron requires interaction of Nop1p with the Rnt1p endonuclease. EMBO J 20: 6856–6865. pmid:11726521 doi: 10.1093/emboj/20.23.6856
|
[56] | Qu LH, Henras A, Lu YJ, Zhou H, Zhou WX, et al. (1999) Seven novel methylation guide small nucleolar RNAs are processed from a common polycistronic transcript by Rat1p and RNase III in yeast. Mol Cell Biol 19: 1144–1158. pmid:9891049 doi: 10.1128/mcb.19.2.1144
|
[57] | Ghazal G, Ge D, Gervais-Bird J, Gagnon J, Abou Elela S (2005) Genome-wide prediction and analysis of yeast RNase III-dependent snoRNA processing signals. Mol Cell Biol 25: 2981–2994. pmid:15798187 doi: 10.1128/mcb.25.8.2981-2994.2005
|
[58] | Hiley SL, Babak T, Hughes TR (2005) Global analysis of yeast RNA processing identifies new targets of RNase III and uncovers a link between tRNA 5' end processing and tRNA splicing. Nucleic Acids Res 33: 3048–3056. pmid:15920104 doi: 10.1093/nar/gki608
|
[59] | Steinmetz EJ, Conrad NK, Brow DA, Corden JL (2001) RNA-binding protein Nrd1 directs poly(A)-independent 3'-end formation of RNA polymerase II transcripts. Nature 413: 327–331. pmid:11565036 doi: 10.1038/35095090
|
[60] | Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature. doi: 10.1038/nature04532
|
[61] | Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141–147. pmid:11805826 doi: 10.1038/415141a
|
[62] | Chen S, Hyman LE (1998) A specific RNA-protein interaction at yeast polyadenylation efficiency elements. Nucleic Acids Res 26: 4965–4974. pmid:9776761 doi: 10.1093/nar/26.21.4965
|
[63] | Schreieck A, Easter AD, Etzold S, Wiederhold K, Lidschreiber M, et al. (2014) RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7. Nat Struct Mol Biol 21: 175–179. doi: 10.1038/nsmb.2753. pmid:24413056
|
[64] | Porrua O, Libri D (2015) Transcription termination and the control of the transcriptome: why, where and how to stop. Nat Rev Mol Cell Biol 16: 190–202. doi: 10.1038/nrm3943. pmid:25650800
|
[65] | Abou Elela S, Ares M Jr. (1998) Depletion of yeast RNase III blocks correct U2 3' end formation and results in polyadenylated but functional U2 snRNA. EMBO J 17: 3738–3746. pmid:9649443 doi: 10.1093/emboj/17.13.3738
|
[66] | Colin J, Candelli T, Porrua O, Boulay J, Zhu C, et al. (2014) Roadblock Termination by Reb1p Restricts Cryptic and Readthrough Transcription. Mol Cell 56: 667–680. doi: 10.1016/j.molcel.2014.10.026. pmid:25479637
|
[67] | Dermody JL, Dreyfuss JM, Villen J, Ogundipe B, Gygi SP, et al. (2008) Unphosphorylated SR-like protein Npl3 stimulates RNA polymerase II elongation. PLoS One 3: e3273. doi: 10.1371/journal.pone.0003273. pmid:18818768
|
[68] | David L, Huber W, Granovskaia M, Toedling J, Palm CJ, et al. (2006) A high-resolution map of transcription in the yeast genome. Proc Natl Acad Sci USA 103: 5320–5325. pmid:16569694 doi: 10.1073/pnas.0601091103
|
[69] | Wlotzka W, Kudla G, Granneman S, Tollervey D (2011) The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO J 30: 1790–1803. doi: 10.1038/emboj.2011.97. pmid:21460797
|
[70] | Huber W, Toedling J, Steinmetz LM (2006) Transcript mapping with high-density oligonucleotide tiling arrays. Bioinformatics 22: 1963–1970. pmid:16787969 doi: 10.1093/bioinformatics/btl289
|
[71] | Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S, et al. (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457: 1033–1037. doi: 10.1038/nature07728. pmid:19169243
|
[72] | Wettenhall JM, Smyth GK (2004) limmaGUI: A graphical user interface for linear modeling of microarray data. Bioinformatics 20: 3705–3706. pmid:15297296 doi: 10.1093/bioinformatics/bth449
|
[73] | Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9: 811–818. pmid:2218183 doi: 10.1002/sim.4780090710
|
[74] | Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10: 48–48. doi: 10.1186/1471-2105-10-48. pmid:19192299
|
[75] | Eden E, Lipson D, Yogev S, Yakhini Z (2007) Discovering Motifs in Ranked Lists of DNA Sequences. PLoS Comput Biol 3: e39. pmid:17381235 doi: 10.1371/journal.pcbi.0030039
|