全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2012 

西藏甲玛铜多金属矿床石英脉特征

Keywords: 地球化学,成矿流体,石英,甲玛铜多金属矿床,西藏

Full-Text   Cite this paper   Add to My Lib

Abstract:

西藏甲玛铜多金属矿床位于冈底斯火山岩浆弧的东段,是冈底斯成矿带的重要组成部分,也是最具代表性的产于后碰撞伸展环境中的超大型斑岩-矽卡岩-浅成低温热液铜多金属矿床。文章以该矿区斑岩体中各类脉体的矿物特征,尤其是脉体石英显微结构以及微量元素特征为切入点,初步划分出3大类5个阶段的岩浆-热液流体。金属硫化物主要沉淀于第2、第4和第5阶段。脉体石英中Al、Fe、K含量的变化指示了流体pH值的变化以及与钾化有关的蚀变。流体的温度范围跨度极大,从602℃到130℃,即从斑岩型高温岩浆流体演化为浅成低温热液型流体。岩浆热液生命周期至少持续3Ma,具有多期多阶段性,开始于岩浆房中岩浆-热液流体的出溶,一直演化至成矿作用结束,贯穿整个岩浆-热液成矿系统。含矿流体中金属元素沉淀得益于岩浆流体pH值的改变。

References

[1]  Fournier R O. 1999. Hydrothermal processes related to movement of fluid from plastic to brittle rock in the magmatic -epithermal environment[J]. Econ. Geol., 94: 1193-1211.
[2]  Gustafson L B and Hunt J P. 1975. The porphyry copper deposit at El Salvador, Chile[J]. Econ. Geol., 70: 857-912.
[3]  Harris A C and Golding S D. 2002. New evidence of magmatic-fluidrelated phyllic alteration: Implications for the genesis of porphyry Cu deposits[J]. Geology, 30: 335-338.
[4]  Harris A C, Kamenetsky V S and White N C. 2003. Silicate-melt inclusions in quartz veins: Linking magmas and porphyry Cu deposits[J]. Science, 302: 2109-2111.
[5]  Hagni R D. 1987. Industrial applications of cathodolumin-escence microscopy[J]. Process Mineralogy, 37-52.
[6]  Heinrich C A. 2005. The physical and chemical evolution of lowsalinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study[J]. Mineralium Deposita, 39: 864-889.
[7]  Hedenquist J W and Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 370: 519-527.
[8]  Hemley J J, Cygan G L, Fein J B and Robinson G R. 1992. Hydrothermal ore-forming processes in the light of studies in rock-buffered systems: I. Iron-copper-zinc-lead sulphide solubility relations[J]. Econ. Geol., 87: 1-22.
[9]  Müller A, René M and Behr H J. 2003. Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock[J]. Mineralogy and Petrology, 79: 167-191.
[10]  Müller A, Thomas R and Wiedenbeck M. 2006. Water content of granitic melts from Cornwall and Erzgebirge: A Raman spectroscopy study of melt inclusions[J]. European Journal of Mineralogy, 18: 429-440.
[11]  更多...
[12]  Müller A, Herrington R and Armstrong R. 2010. Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits[J]. Mineral Deposita, 45: 707-727.
[13]  Penniston-Dorland S C. 2001. Illumination of vein quartz textures in a porphyry copper ore deposits using scanned cathodoluminescence: Grasberg igneous complex, Irian Jaya, Indonesia[J]. Am. Mineral., 86: 652-666.
[14]  杜光树,姚 鹏,潘凤雏,栗登逵,李文彬,宁英毅. 1998. 喷流成因矽卡岩与成矿——以西藏甲玛铜多金属矿床为例[M]. 成都: 四川科学技术出版社. 82-113.
[15]  秦志鹏. 2010. 西藏甲玛铜多金属矿床似埃达克岩的成岩成矿作用(硕士论文)[D]. 导师: 汪雄武. 成都:成都理工大学.
[16]  唐菊兴, 王登红, 汪雄武, 钟康惠, 应立娟, 郑文宝, 黎枫佶, 郭 娜, 秦志鹏, 姚晓峰, 李 磊, 王 友, 唐晓倩. 2010. 西藏甲玛铜多金属矿矿床地质特征和及其矿床模型[J]. 地球学报, 31(4): 495-506.
[17]  应立娟, 唐菊兴, 王登红, 畅哲生, 屈文俊, 郑文宝. 2009. 西藏甲玛铜多金属矿床矽卡岩中辉钼矿铼-锇同位素定年及其成矿意义[J]. 岩矿测试, 28(3): 265-268.
[18]  杨志明. 2008. 西藏驱龙超大型斑岩铜矿床-岩浆作用与矿床成因(博士论文)[D]. 导师:侯增谦. 北京:中国地质科学院地质研究所.
[19]  郑文宝, 陈毓川, 宋 鑫, 唐菊兴, 应立娟, 黎枫佶, 唐晓倩. 2010. 西藏甲玛铜多金属矿元素分布规律及地质意义[J]. 矿床地质,34(2):12-24.
[20]  周 云. 2010. 西藏墨竹工卡县甲玛铜多金属矿成矿流体特征及演化(硕士论文)[D]. 导师: 汪雄武. 成都:成都理工大学.
[21]  Arancibia O N and Clark A H. 1996. Early magnetite-amphibole-plagioclase alteration-mineralization in the Island Copper porphyry copper-gold-molybdenum deposit, British Columbia[J]. Econ. Geol., 91: 402-438.
[22]  Bodnar R J. 1995. Fluid inclusion evidence for magmatic source for metals in porphyry copper deposits[A]. In: Thompson J F H, ed. Magmas, fluids and ore deposits[C]. Ottawa: Mineralogical Association of Canada. 35(8): 139-152.
[23]  Dilles J H and Einaudi M T. 1992. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada: A 6 km vertical reconstruction[J]. Econ. Geol., 87: 1963-2001.
[24]  Proffett J M. 2003. Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina[J]. Econ. Geol., 98: 1535-1574.
[25]  Rusk B and Reed M. 2002. Scanning electron microscope-cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit[J]. Montana Geology, 30: 727-730.
[26]  Rusk B, Reed M, Dilles J and Kent A. 2006. Intensity of quartz cathodoluminescence and trace element content of quartz from the porphyry copper deposit in Butte[J]. American Mineralogist, 91: 1300-1312.
[27]  Rusk B, Lowers H A and Reed M H. 2008a. Trace elements in hydrothermal quartz: Relationships to cathodoluminescence textures and insights into vein formation[J]. Geology, 36: 547-550.
[28]  Rusk B, Reed M H and Dilles J H. 2008b. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper- molybdenum deposit at Butte, Montana[J]. Econ. Geol., 103: 307-334.
[29]  Seedorff E, Dilles J, Proffett J Jr, Einaudi M T, Zurcher L, Stavast W J A, Johnson D A Y Barton M D. 2005. Porphy- and ry deposits: Characteristics and origin of hypogene features[J]. Econ. Geol., (100th Anniversary volum): 251-291.
[30]  Smith J V and Stenstrom R C. 1965. Electron-excited luminescenceas a petrologic tool[J]. Geology, 73: 627-635.
[31]  Thomas J B, Watson E B, Spear F S, Shemella P T, Nayak S K and Lanzirotti A. 2010. TitaniQ under pressure: The effect of pressure and temperature on the solubility of Ti in quartz[J]. Contributions to Mineralogy and Petrology, 160(5): 743-759.
[32]  Wark D A and Watson E B. 2006. TitaniQ: A titanium-in-quartz geothermometer[J]. Contributions to Mineralogy and Petrology, 152: 743-754.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133