Fournier R O. 1999. Hydrothermal processes related to movement of fluid from plastic to brittle rock in the magmatic -epithermal environment[J]. Econ. Geol., 94: 1193-1211.
[2]
Gustafson L B and Hunt J P. 1975. The porphyry copper deposit at El Salvador, Chile[J]. Econ. Geol., 70: 857-912.
[3]
Harris A C and Golding S D. 2002. New evidence of magmatic-fluidrelated phyllic alteration: Implications for the genesis of porphyry Cu deposits[J]. Geology, 30: 335-338.
[4]
Harris A C, Kamenetsky V S and White N C. 2003. Silicate-melt inclusions in quartz veins: Linking magmas and porphyry Cu deposits[J]. Science, 302: 2109-2111.
[5]
Hagni R D. 1987. Industrial applications of cathodolumin-escence microscopy[J]. Process Mineralogy, 37-52.
[6]
Heinrich C A. 2005. The physical and chemical evolution of lowsalinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study[J]. Mineralium Deposita, 39: 864-889.
[7]
Hedenquist J W and Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 370: 519-527.
[8]
Hemley J J, Cygan G L, Fein J B and Robinson G R. 1992. Hydrothermal ore-forming processes in the light of studies in rock-buffered systems: I. Iron-copper-zinc-lead sulphide solubility relations[J]. Econ. Geol., 87: 1-22.
[9]
Müller A, René M and Behr H J. 2003. Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock[J]. Mineralogy and Petrology, 79: 167-191.
[10]
Müller A, Thomas R and Wiedenbeck M. 2006. Water content of granitic melts from Cornwall and Erzgebirge: A Raman spectroscopy study of melt inclusions[J]. European Journal of Mineralogy, 18: 429-440.
[11]
更多...
[12]
Müller A, Herrington R and Armstrong R. 2010. Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits[J]. Mineral Deposita, 45: 707-727.
[13]
Penniston-Dorland S C. 2001. Illumination of vein quartz textures in a porphyry copper ore deposits using scanned cathodoluminescence: Grasberg igneous complex, Irian Jaya, Indonesia[J]. Am. Mineral., 86: 652-666.
Arancibia O N and Clark A H. 1996. Early magnetite-amphibole-plagioclase alteration-mineralization in the Island Copper porphyry copper-gold-molybdenum deposit, British Columbia[J]. Econ. Geol., 91: 402-438.
[22]
Bodnar R J. 1995. Fluid inclusion evidence for magmatic source for metals in porphyry copper deposits[A]. In: Thompson J F H, ed. Magmas, fluids and ore deposits[C]. Ottawa: Mineralogical Association of Canada. 35(8): 139-152.
[23]
Dilles J H and Einaudi M T. 1992. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada: A 6 km vertical reconstruction[J]. Econ. Geol., 87: 1963-2001.
[24]
Proffett J M. 2003. Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina[J]. Econ. Geol., 98: 1535-1574.
[25]
Rusk B and Reed M. 2002. Scanning electron microscope-cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit[J]. Montana Geology, 30: 727-730.
[26]
Rusk B, Reed M, Dilles J and Kent A. 2006. Intensity of quartz cathodoluminescence and trace element content of quartz from the porphyry copper deposit in Butte[J]. American Mineralogist, 91: 1300-1312.
[27]
Rusk B, Lowers H A and Reed M H. 2008a. Trace elements in hydrothermal quartz: Relationships to cathodoluminescence textures and insights into vein formation[J]. Geology, 36: 547-550.
[28]
Rusk B, Reed M H and Dilles J H. 2008b. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper- molybdenum deposit at Butte, Montana[J]. Econ. Geol., 103: 307-334.
[29]
Seedorff E, Dilles J, Proffett J Jr, Einaudi M T, Zurcher L, Stavast W J A, Johnson D A Y Barton M D. 2005. Porphy- and ry deposits: Characteristics and origin of hypogene features[J]. Econ. Geol., (100th Anniversary volum): 251-291.
[30]
Smith J V and Stenstrom R C. 1965. Electron-excited luminescenceas a petrologic tool[J]. Geology, 73: 627-635.
[31]
Thomas J B, Watson E B, Spear F S, Shemella P T, Nayak S K and Lanzirotti A. 2010. TitaniQ under pressure: The effect of pressure and temperature on the solubility of Ti in quartz[J]. Contributions to Mineralogy and Petrology, 160(5): 743-759.
[32]
Wark D A and Watson E B. 2006. TitaniQ: A titanium-in-quartz geothermometer[J]. Contributions to Mineralogy and Petrology, 152: 743-754.