全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2012 

西藏冈底斯南缘努日铜钨钼矿床地质特征与矽卡岩矿物学研究

Keywords: 地质学,矽卡岩矿物,分带性,石榴子石环带,氧化还原条件,努日铜钨钼矿床,冈底斯南缘,西藏

Full-Text   Cite this paper   Add to My Lib

Abstract:

西藏山南地区努日铜钨钼矿床位于冈底斯火山-岩浆弧构造带东段南缘,是新近探明的一个大型矽卡岩型铜钨钼矿床。矿区内出露有白垩系比马组和旦师庭组及大量晚白垩世和古近纪的侵入岩。矿区内的矽卡岩呈层状、似层状产在白垩系比马组地层中,矽卡岩矿物主要为石榴子石、辉石、硅灰石、角闪石、绿帘石、符山石等;金属矿物主要有黄铜矿、黄铁矿、辉钼矿、白钨矿、斑铜矿、黝铜矿等。电子探针分析结果表明,矽卡岩矿物中石榴子石主要以钙铁榴石和钙铝榴石为主,辉石主要为透辉石,角闪石属于镁角闪石-阳起石,帘石主要为绿帘石。矽卡岩类型在水平和垂向上具有较好的分带性,依次由石榴子石矽卡岩过渡到透辉石矽卡岩,再过渡到透辉石硅灰石矽卡岩,这种分带特征表现了流体交代作用的变化。矿化类型和矿化组合也具有一定的分带性,浅部以矽卡岩型钨矿化为主;随着深度的增加,逐渐过渡为脉状的铜矿体或铜钼矿体,在局部较深的钻孔中还有少量的斑岩型矿化,主要以铜矿化为主,伴有较弱的钼矿化。石榴子石组分在垂向和水平方向上均具有规律性的变化,由钙铁榴石占主体逐渐过渡为钙铝榴石占主体。成分剖面显示石榴子石的组分和化学成分随着环带的变化而变化,说明石榴子石是由一种脉动式流体形成的,可能是由流体化学成分的自身再平衡和生长过程中流体流量的改变而引起生长速率的改变共同实现的。通过含铁律比值(Kp)的计算,得出努日矿床形成于弱酸性、较强氧化状态。结合矽卡岩矿物分布和成分变化特征,推测努日矿区的矽卡岩可能是由深部侵入体分异出的热液沿着层间的破碎带或断裂,经过较远距离的运移,与地层中的碳酸盐岩发生交代作用而形成。渗透交代作用可能是形成矿区矽卡岩的主要原因,流体的温度和氧逸度变化对于形成不同的矽卡岩矿物具有重要作用。努日矿床的矽卡岩为浅部矽卡岩,可能存在统一的斑岩型-矽卡岩型成矿系统,深部具有较大的找矿潜力。

References

[1]  江化寨,陈自康. 2005. 西藏自治区乃东县劣布铜矿综合地质特征[J]. 地质找矿论丛, 20(增刊): 81-86.
[2]  李光明,秦克章,丁奎首,李金祥,王少怀,江善元,林金灯,江化寨,方树元,张兴春. 2006. 冈底斯东段南部第三纪矽卡岩型Cu-Au±Mo矿床地质特征、矿物组合及其深部找矿意义[J]. 地质学报,80(9):1407-1423.
[3]  李光明,李金祥,秦克章,张天平,肖 波. 2007. 西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据[J]. 岩石学报,23(5):935-95.
[4]  李光明,秦克章,陈 雷,陈金标,范 新,琚宜太. 2011. 冈底斯东段山南地区第三纪矽卡岩-斑岩Cu-Mo-W(Au)多金属矿床勘查模型机深部找矿意义[J]. 地质与勘探,47(1):20-31.
[5]  李金祥,秦克章,李光明. 2006. 富金斑岩型铜矿床的基本特征、成矿物质来源与成矿高氧化岩浆-流体演化[J]. 岩石学报,22(3):678-68.
[6]  李金祥,秦克章,李光明,林金灯,肖 波,江化寨,韩逢杰,黄树峰,陈 雷,赵俊兴. 2011. 冈底斯东段羌堆铜钼矿床年代学、矽卡岩石榴石成分及意义[J]. 地质与勘探,47(1):11-20.
[7]  林文蔚,赵一鸣,蒋崇俊. 1990. 矽卡岩矿床中共生单斜辉石-石榴石特征及其地质意义[J]. 矿床地质,9(3):196-207.
[8]  陆 琦,刘惠芳. 2001. 柿竹园多金属矿床的分形时-空结构——以矽卡岩矿物中Sn等成矿元素分布特征为例[J]. 地球科学,26(2):123-127.
[9]  毛景文,李红艳,宋学信. 1998. 湖南柿竹园钨锡钼多金属矿床地质与地球化学[M]. 北京: 地质出版社. 1-215.
[10]  宋国学. 2010. 长江中下游池州地区矽卡岩-斑岩型钨钼矿成岩成矿作用与成矿系统研究(博士论文)[D]. 导师: 秦克章,李光明. 中国科学院地质与地球物理研究所. 1-197.
[11]  王少怀,陈自康. 2003. 西藏克鲁-冲木达铜金矿带矿床地质特征及其成矿规律[J]. 地质与勘探,39(2):21-25
[12]  肖 波,秦克章,李光明,李金祥,陈 雷,赵俊兴,范 新. 2011. 冈底斯驱龙斑岩铜-钼矿区外围矽卡岩型铜矿的分布、特征及深部找矿意义[J]. 地质与勘探,47(1):43-54.
[13]  闫学义,黄树峰,杜安道. 2010. 冈底斯泽当大型钨铜钼矿Re-Os年龄及路远走滑转换成矿作用[J]. 地质学报,84(3):398-406.
[14]  张智宇,杜杨松,张 静,庞振山,李大鹏,贾鹏飞. 2010 安徽贵池铜山矽卡岩型铜矿床蚀变矿化分带特征及其成因[J]. 矿床地质,29(6):999-1016.
[15]  赵一鸣,林文蔚,毕承思,李大新,蒋崇俊. 1990. 中国矽卡岩矿床[M]. 北京: 地质出版社. 1-347.
[16]  赵一鸣,李大新. 2003. 中国矽卡岩矿床中的角闪石[J]. 矿床地质,22(4):345-359.
[17]  郑有业,王保生,樊子珲,张华平. 2002. 西藏冈底斯东段构造演化及铜金多金属成矿潜力分析[J]. 地质科技情报,21(2):55-60.
[18]  更多...
[19]  周涛发,袁 峰,岳书仓,刘晓东,赵 勇. 2002. 安徽月山矿田夕卡岩型矿床形成的水岩作用[J]. 矿床地质,21(1):1-9.
[20]  Brown P E, Bowman J R and Kelly W C. 1985. Petrologic and stable isotope constraints on the source and evolution of skarn-forming fluids at Pine Creek, California[J]. Econ. Geol., 80: 72-95.
[21]  Burt D M. 1977. Mineralogy and petrology of skarn deposits[J]. Societa Italiana Mineralogia and Petrologia, 33: 859-873.
[22]  Chen L, Qin K Z, Li J X, Xiao B, Li G M, Zhao J X and Fan X. 2012. Fluid inclusions and hydrogen, oxygen, sulfur isotopes of Nuri Cu-W-Mo deposit in the southern Gangdese, Tibet[J]. Resource Geology, 62(1): 42-62.
[23]  Coleman M and Hodges K. 1995. Evidence for Tibetan Plateau uplift before 14 Ma ago from an ewminimum age forest-west extension[J]. Nature, 374: 49-52.
[24]  Crowe D E, Riciputi L R, Bezenek S and Ignatiev A. 2001. Oxygen isotope and traceelement zoning in hydrothermal garnets: Windows into large-scale fluid flow behavior[J]. Geology, 29: 479-482.
[25]  de Hoog J C M., Hattori K H and Hoblitt R P. 2004. Oxidized sulfur-rich mafic magma at Mount Pinatubo, Phillippines[J]. Contributions to Mineralogy and Petrology, 146, 750-761.
[26]  Dziggel A, Wulff K, Kolb J and Meyer F M. 2009. Processes of high-T fluid-rock interaction during gold mineralization in carbonate-bearing metasediments: An example from the Navachab gold deposit, Namibia[J]. Mineralium Deposita, 44: 665-687.
[27]  Einaudi M T and Burt D M. 1982. Introduction-terminology, classification and composition of skarn deposit[J]. Econ. Geol., 77: 745-754.
[28]  Einaudi M T, Meinert L D and Newberry R J. 1981 Skarn deposits[J]. Economic Geology 75th anniversary volume, 317-391.
[29]  Gaspar L M and Carlos M C. 2000. Mineralogy and metasomatic evolution of distal strata-bound scheelite skarns in the Riba de Alva mine, northeastern Portugal[J]. Econ. Geol., 95: 1259-1275.
[30]  Harris N B and Einaudi M T. 1982. Skarn deposits in the Yerington district, Nevada: Metasomatic skarn evolution near Ludwig[J]. Econ. Geol., 77: 877-898.
[31]  Harrison T M, Yin A, Grove M and Oscar M. 2000. The zedong window: A record of superposed Tertiary convergence in sountheastern Tibet[J]. Geophysisc Reserch, 105: 19211-19230.
[32]  Holten T, Jamtveit B and Meakin P. 2000. Noise and oscillatory zoning of minerals[J]. Geochimica et Cosmochimica Acta, 64: 1893-1904.
[33]  Imai A, Listanco E L and Fuji T. 1993. Petrologic and sulfur isotopic significance of highly oxidized and sulfur-rich magma of Mt. Pinatubo, Philippines[J]. Geology, 21: 699-702.
[34]  Jamtveit B, Wogeluis R A and Fraser D G. 1993. Zonation patterns of skarn garnets:records of hydrothermal system evolution[J]. Geology, 21: 113-116.
[35]  Jamtveit B. 1999. Crystal growth and intracrystalline zonation patterns in hydrothermal environments[A]. In: Jamtveit B, Meakin P, eds. Growth, dissolution and pattern formation in Geosystems[C]. Kluewer Academic Publishers, 65-84.
[36]  Kwak T A P. 1994. Hydrothermal alteration in carbonate replacement deposits[J]. Geological Association of Canada, Short Course Notes, 11: 381-402.
[37]  Leake B E, Woolley A R and Arps C E S. 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new mineral and mineral names[J]. American Mineralogist, 82: 1019-1037.
[38]  Li G M, Qin K Z, Ding K S, Liu T B, Li J X, Wang S H, Jiang S Y and Zhang X C. 2006. Geology, Ar-Ar age and mineral assemblage of Eocene Skarn Cu-Au±Mo deposits in the Southeastern Gangdese arc, Southern Tibet: Implications for deep exploration[J]. Resource Geology, 56: 197-217.
[39]  Lu H Z, Liu Y M, Wang C L, Xu Y Z and Li H Q. 2003. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China[J]. Econ. Geol., 98: 955-974.
[40]  Meinert L D, Dipple G M and Nicolescu S. 2005. World skarn deposits [A]. In: Hedenquist J W, Thompson J F H, Goldfarb R J, Richards J P, eds. Economic Geology 100th Anniversary Volume[C]. Society of Economic Geologists, 299-336.
[41]  Meinert L D, Hedenquist J W, Satoh H and Matsuhisa Y. 2003. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids[J]. Econ. Geol., 98: 147-156.
[42]  Meinert L D. 1992. Skarn and skarn deposit[J]. Geoscience Canada, 19: 145-462.
[43]  Meinert L D. 1998. A review of skarns that contain gold[A]. Mineralogical Association of Canada Short Course Series 26, 359-414.
[44]  Newberry R J, Allegro G L, Cutler S E, Hagen-Levelle J H, Adams D D, Nicholson L C, Weglarz, T B, Bakke A A, Clautice K H, Coulter G A, Ford M J, Myers G L and Szumigala D J. 1997. Skarn deposits of Alaska[J]. Economic Geology Monograph, 9: 355-395.
[45]  Qin K Z and Shunso Ishihara. 1998. On the possibility of porphyry copper mineralization in Japan[J]. International Geology Review, 40(6): 539-551.
[46]  Qin K Z, Tosdal R, Li G M, Zhang Q and Li J X. 2005. Formation of the Miocene porphyry Cu (-Mo-Au) deposits in the Gangdese arc, southern Tibet, in a transitional tectonic setting[A]. In: Zhao C S, Guo B J, eds. Mineral deposit research[C]. Meeting the Global Challenge. 3: 44-47.
[47]  常印佛,刘湘培,吴言昌. 1991. 长江中下游铜铁成矿带[M]. 北京:地质出版社. 1-379.
[48]  陈 雷,秦克章,李光明,肖 波,李金祥,江化寨,陈金标,赵俊兴,范 新,韩逢杰,黄树峰,琚宜太. 2011. 西藏山南努日铜钼钨矿床矽卡岩地球化学特征及成因[J]. 地质与勘探,47(1):78-88.
[49]  方树元. 2003. 西藏自治区乃东县劣布铜矿区的矿床地质特征及找矿远景分析[J]. 地质找矿论丛,18(增刊): 48-51.
[50]  Sato K. 1980. Tungsten skarn deposit of the Fujigatani mine, Southwest Japan[J]. Econ. Geol., 75: 1066-1082.
[51]  Shimazaki H and Sakai H. 1984. Regional variation of sulfur isotopic composition of skarn deposits in the westernmost part of the Inner Zone of Southwest Japan[J]. Mining Geology, 34: 419-424.
[52]  Shimazaki H and Yamamoto M. 1983. Sulfur isotope ratios of the Akatani, Iide and Waga-Sennin skarn deposits, and their bearing on mineralizations in the "Green Tuff" region, Japan[J]. Geochemical, 17: 197-207.
[53]  Shimazaki H. 1980. Characteristics of skarn deposit and related acid magmatism in Japan[J]. Econ. Geol., 75: 173-183.
[54]  Sillitoe R H. 2010. Porphyry copper systems[J]. Econ. Geol., 105: 3-41.
[55]  Smith M P, Henderson P, Jeffries T E R, Long J and Williams C T. 2004. The rare earth elements and uranium in garnet from the Beinn an Dubhaich aureole, Skye, Scottland, UK: Constraints on processes in a dynamic hydrothermal system[J]. Journal of Petrology, 45: 457-484.
[56]  Somarin A K. 2004. Garnet composition as an indicator of Cu mineralization: Evidence from skarn deposits of NW Iran[J]. Journal of Geochemical Exploration, 81(1-3), 47-57
[57]  Xu G and Lin X. 2000. Geology and geochemistry of the Changlongshan skarn iron deposit, Anhui Province, China[J]. Ore Geology Reviews, 16: 91-106.
[58]  Yin A and Harrsion T M. 2000. Geologic evolution of the Himalaya Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280.
[59]  Zaw U K and Clark A H. 1978. Fluoride-hydroxyl ratios of skarn silicates, Cantung E-zone scheelite orebody, Tungsten, Northwest Territories[J]. Canadian Mineralogist, 16: 207-221.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133