全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高速流前端磁场Bz分量的变化

, PP. 793-803

Keywords: 等离子体片,高速流,背景等离子体,磁结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

等离子体片高速流在磁层活动中起着重要作用,其形成机制以及与背景等离子体的相互作用日益引起关注.本文利用搭载于Cluster四颗卫星上的磁场和等离子体观测仪器,对2001和2002两年发生在磁尾等离子体片中高速流事件期间的磁场变化进行了统计研究.结果表明,在高速流前端,伴随着等离子体整体速度的增加,绝大多数高速流前端磁场的Bz分量经常出现先短暂减小然后剧烈增大的现象,符合以往利用Geotail卫星观测数据获得的统计特性.然而个例研究发现Bz的下降与上升常常是不对称的,且Bz分量下降的程度并不是总能达到反向的程度,说明这种变化特征并不一定是存在磁结构的表现.我们认为更多时候这种磁场的变化特征是高速流挤压背景等离子体磁场造成的,是相互作用的结果.当偶极化锋面形成后,由类似间断面的磁场界面反射的热离子产生抗磁效应,可能对Bz下降形成部分贡献,而Bz增加则是高速流携带磁通量堆积的效果.

References

[1]  Cao J B, Ma Y D, Parks G, et al. Joint observations by Cluster satellites of bursty bulk flows in the magnetotail[J]. J. Geophys. Res., 2006, 111, A04206, doi:10.1029/2005JA011322
[2]  Shue J H, Ieda A, Lui A T Y, et al. Two classes of earthward fast flows in the plasma sheet[J]. J. Geophys. Res., 113, A02205, doi:10.1029/2007JA012456
[3]  Ma Y D, Cao J B, Nakamura R, et al. Statistical analysis of earthward flow bursts in the inner plasma sheet during substorms[J]. J. Geophys. Res., 114, A07215, doi:10.1029/2009JA014275
[4]  Panov E V, Nakamura R, Baumijohann W, et al. Multiple overshoot and rebound of a bursty bulk flow[J]. Geophys. Res. Lett., 2010, 37, L08103, doi:10.1029/2009GL041971
[5]  Ma Y D, Cao J B, Reme H, et al. The radial evolution of earthward BBFs during substorm[J]. Sci China Earth Sci., 2010, 53:1542-1551, doi:10.1007/s11430-010-4040-x
[6]  Reme H, Aoustin C, et al. First multisapacecraft ion measurements in and near the Earth''s magnetosphere with the identical Cluster Ion Spectrometry (CIS) experiment[J]. Ann. Geophys., 2001, 19:1303-1354
[7]  Wilken B, Guttler W, Korth A, et al. RAPID the imaging energetic particle spectrometer on Cluster[J]. Space Sci. Rev., 1997, 79:399-473
[8]  Balogh A H, Carr C M, Acuna M H, et al. The cluster magnetic field investigation: Overview of in-flight performance and initial results[J]. Ann. Geophys., 2001, 19:1207-1217
[9]  Zhou X Z, Angelopoulos E V, Sergeev V, Runov A. Accelerated ions ahead of Earthward-propagating dipolarization fronts[J]. J. Geophys. Res., 2010, 115, A00103, doi:10.1029/2010JA015481
[10]  Zhou X Z, Angelopoulos V, Sergeev V, Runov A. On the nature of precursor flows upstream of advancing dipolarization fronts[J]. J. Geophys. Res., 2011, 116, A03222, doi:10.1029/2010JA016165
[11]  Nakamura R, Baumihohann W, Klecher B, et al. Motion of the dipolarization front during a flow burst event observed by Cluster[J]. Geophys. Res. Lett., 2002, 29(20):1942
[12]  Nakamura R, Baumihohann W, Zhang T L, et al. Cluster and Double Star observations of dipolarization[J]. Ann. Geophys., 2005, 23:2915-2920
[13]  Shiokawa K, Miyashita Y, Shinohara I, Matsuoka A. Decrease in B_z prior to the dipolarization in the near-Earth plasma sheet[J]. J. Geophys. Res., 2005, 110, A09219, doi:10.1029/2005JA011144
[14]  Angelopoulos V, Baumjohann W, Kennel C F, et al. Bursty bulk flows in the inner central plasma sheet[J]. J. Geophys. Res., 1992, 97:4027-4039
[15]  Angelopoulos V, Coroniti F V, Kennel C F, et al. Multipoint analysis of a bursty bulk flow event on April 11, 1985[J]. J. Geophys. Res., 1996, 101:4967-4989
[16]  Ohtani S, Shay M A, Mukai T. Temporal structure of the fast convective flow in the plasma sheet: Comparison between observations and two-fluid simulation[J]. J. Geophys. Res., 2004, 109, A03210, doi:10.1029/ 2003JA010002
[17]  Slavin J A, Lepping R P, Gjerloev J, et al. Geotail observations of magnetic flux ropes in the plasma sheet[J]. J. Geophys. Res., 108(A1), 1015, doi:10.1029/ 2002JA009557, 2003
[18]  Runov A, Angelopoulos V, Sitnov M I, et al. THEMIS observations of an earthward- propagating depolarization front[J]. Geophys. Res. Lett., 36, L14106, doi:10.1029/ 2009GL038980
[19]  Runov A, Angelopoulos V, Sitnov M, et al. Dipolarization fronts in the magnetotail plasma sheet[J]. Planet. Space Sci., 2010, doi:10.1016/j.pss.2010.06.006
[20]  Sormakov D A, Sergeev V A. Topology of magnetic flux ropes in the magnetospheric plasma sheet as measured by the Geotail spacecraft[J]. Cosmic Res., 2008, 46(5):387-391
[21]  Henderson P D, Owen C J, Alexeev I V, et al. Cluster observations of flux rope structures in the near-tail[J]. Ann. Geophys., 2006, 24:651-666
[22]  Sergeev V, Angelopoulos V, Apatenkov S, et al. Kinetic structure of the sharp injection/dipolarization front in the flow-braking region[J]. Geophys. Res. Lett., 36, L21105, doi:10.1029/2009GL040658
[23]  Zhou M, Ashour-Abdalla M, Deng X, et al. THEMIS observation of multiple dipolarization fronts and associated wave characteristics in the near-Earth magnetotail[J]. Geophys. Res. Lett., 2009, 36, L20107, doi:10.1029/2009GL040663
[24]  Deng X, Ashour-Abdalla M, Zhou M, et al. Wave and particle characteristics of earthward electron injections associated with dipolarization fronts[J]. J. Geophys. Res., 2010, 115, A09225, doi:10.1029/2009JA015107
[25]  Zhang X J, Angelopoulos V, Runov A, et al. Current carriers near dipolarization fronts in the magnetotail: A THEMIS event study[J]. J. Geophys. Res., 2011, 116, A00I20, doi:10.1029/2010JA015885
[26]  Fu H S, Khotyaintsev Y V, Andre M, et al. Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts[J]. Geophys. Res. Lett., 2011, 38, L16104, doi:10.1029/2011GL048528

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133