全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用行星际监测数据进行地磁暴预报

, PP. 183-186

Keywords: 太阳风,行星际磁场,地磁暴,预报

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用全连接神经网络方法应用于地磁Dst指数的预报中.对ACE卫星探测的太阳风和行星际磁场及其变化对未来几小时的Dst指数的影响进行了统计分析,发现在这些行星际实测参数中,对Dst指数作用较为明显的是太阳风速度、太阳风质子密度和行星际磁场南向分量,同时,当前Dst指数实测值对今后几小时的Dst指数已有很强的制约作用.在统计分析的基础上,建立了全连接神经网络预报模型.由于采用了全连接神经网络结构,模式能够反映出太阳风、行星际磁场等参数与地磁Dst指数参数的复杂联系,可以自动建立输入参量的最佳组合方式,提高了预报精度.通过利用大量实测数据对神经网络模式进行训练,最终建立了利用优选的ACE卫星行星际监测数据提前2h对Dst指数进行预报.通过检测,预报的误差为14.3%.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133