Choi S I , Yoon S G. Improvement of discharge capacity of LiCoO2 thin-film cathodes deposited in trench structure by liquid-delivery metalorganic chemical vapor deposition[J]. Applied Physics Letters, 2003, 82(19): 3345-3347.
[2]
Tarascon J M , Armand M. Issues and challenges facing rechargeable lithium batteries[J].Nature, 2001, 414(6861): 359-367.
[3]
Whittingham M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004,104(10): 4271-4301.
[4]
Xia H, Lu L, Meng Y S. Growth of layered LiNi0.5Mn0.5O2 thin films by pulsed laser deposition for application in microbatteries [J]. Applied Physics Letters, 2008, 92(1): 011912-1-011912-3.
[5]
Jang Y I, Huang B, Chou F C, et al. Magnetic characterization of lambda-MnO2 and Li2Mn2O4 prepared by electrochemical cycling of LiMn2O4 [J]. Journal of Applied Physics, 2000, 87(10): 7382 -7388.
[6]
Ariyoshi K, Iwakoshi Y, Nakayama N, et al. Topotactic two-phase reactions of Li[Ni1/2Mn3/2]O4 (P4332) in nonaqueous lithium cells [J]. Journal of the Electrochemical Society, 2004, 151(2): A293-A303.
[7]
Xia H, Meng Y S, Lu L, et al. Electrochemical properties of nonstoichiometric LiNi0.5Mn1.5O4-δ thin-film electrodes prepared by pulsed laser deposition [J]. Journal of the Electrochemical Society, 2007, 154(8): A737-A743.
[8]
Xia H, Lu L. Texture effect on the electrochemical properties of LiCoO2 thin films prepared by PLD [J]. Electrochimica Acta, 2007, 52(24): 7014-7021.
[9]
Shokoohi K, Tarascon J M, Wilkens B J. Fabrication of thin-film LiMn2O4 cathodes for rechargeable microbatteries[J]. Applied Physics Letters, 1991, 59(10): 1260-1262.
[10]
Martha S K, Markevich E, Burgel V, et al. A short review on surface chemical aspects of Li batteries: A key for a good performance[J].Journal of Power Sources, 2009,189(1): 288-296.
[11]
Xia H, Lu L, Ceder G. Substrate effect on the microstructure and electrochemical properties of LiCoO2 thin films grown by PLD[J]. Journal of Alloys and Compounds, 2006, 417(1/2): 304-310.
[12]
Lu Z H, Beaulieu L Y, Donaberger R A, et al. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2 [J]. Journal of the Electrochemical Society, 2002, 149(6): A778-A791.
[13]
Ohzuku T, Makimura Y. Layered lithium insertion material of LiNi1/2Mn1/2O2: A possible alternative to LiCoO2 for advanced lithium-ion batteries[J]. Chemistry Letters, 2001, 8: 744-745.
[14]
Julien C. Local cationic environment in lithium nickel-cobalt oxides used as cathode materials for lithium batteries[J]. Solid State Ionics, 2000, 136: 887-896.
[15]
Karan N K, Saavedra-Arias J J, Pradhan D K, et al. Structural and electrochemical characterizations of solution derived LiMn0.5Ni0.5O2 as positive electrode for Li-ion rechargeable batteries[J]. Electrochemical and Solid-State Letters, 2008, 11(8): A135-A139.
[16]
Ramana C V, Zaghib K, Julien C. Highly oriented growth of pulsed-laser deposited LiNi0.8Co0.2O2 films for application in microbatteries[J]. Chemistry of Materials, 2006, 18(6): 1397-1400.
[17]
Xia H, Meng Y S, Lai M O, et al. Structural and electrochemical properties of LiNi0.5Mn0.5O2 thin-film electrodes prepared by pulsed laser deposition [J]. Journal of the Electrochemical Society, 2010, 157(3): A348-A354.
[18]
Kang K S, Meng Y S, Breger J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries [J].Science, 2006, 311(5763): 977-980.
[19]
Xia H, Lu L, Meng Y S, et al. Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition [J]. Journal of the Electrochemical Society, 2007, 154(4): A337-A342.