全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2013 

离子交换-电沉积法制备高Pt利用率多孔电极

, PP. 53-58

Keywords: 燃料电池,离子交换-电沉积,铂利用率

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用离子交换-电沉积的方法(Ion-exchange/electrodeposition,IEE)制备了一种高Pt利用率催化电极,对所制备电极的表面形貌、催化活性及单电池性能用线性扫描伏安(LSV)、扫描电镜(SEM)、透射电镜(TEM)和单电池测试进行了表征.结果表明,通过电极制备工艺和离子交换-电沉积参数的调控,能够消除碳载体表面官能团的影响,使铂阳离子只与全氟磺酸树脂(Nafion)上的H+进行交换.在无铂离子的电解质中,将被交换的铂阳离子还原到与Nafion接触的碳载体上,使每一个铂纳米粒子都处于气体多孔电极的三相界面上,有效地调控铂纳米粒子的尺寸和分散度.单电池测试表明,以铂载量为0.014mgPt?cm-2的IEE电极组装的电池的输出功率与铂载量为0.3mgPt?cm-2的Nafion粘接Pt/C电极相当.

References

[1]  Xiao W, Jin X B, Deng Y, et al. Three-phase interlines electrochemically driven into insulator compounds: A penetration model and its verification by electroreduction of solid AgCl[J]. Chemistry-A European Journal, 2007, 13(2): 604-612.
[2]  Chen S G, Wei Z D, Li H, et al. High Pt utilization PEMFC electrode obtained by alternative ion-exchange/electrodeposition[J]. Chemical Communications, 2010, 46: 8782-8784.
[3]  Lee J S, Seo J S, Han K K, Kim H S. Preparation of low Pt loading electrodes on Nafion (Na+)-bonded carbon layer with galvanostatic pulses for PEMFC application[J]. Journal of Power Sources, 2006, 163(1): 349-356
[4]  刘勇(Liu Y), 魏子栋(Wei Z D), 陈四国(Chen S G), et al. PEMFC electrodes platinized by modulated pulse current electrodeposition[J]. Acta Physico-Chimica Sinica(物理化学学报), 2007, 23(4): 521-525.
[5]  Thompson S D, Jordan L R, Forsyth M. Platinum electrodeposition for polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2001, 46(10/11): 1657-1663.
[6]  Shao Y Y, Yin G P, Wang J J, et al. Multi-walled carbon nanotubes based Pt electrodes prepared with in situ ion exchange method for oxygen reduction[J]. Journal of Power Sources, 2006, 161(1): 47-53.
[7]  Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825): 732-735.
[8]  Maruyama J, Abe I. Structure control of a carbon-based noble-metal-free fuel cell cathode catalyst leading to high power output[J]. Chemical Communications, 2007, 27: 2879-2881.
[9]  Wen Z H, Liu J, Li J H. Core/Shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells[J]. Advanced Materials, 2008, 20(4): 743-747.
[10]  Wen Z H, Wang Q, Li J H. Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source: Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts[J]. Advanced Functional Materials, 2008, 18(6): 959-964.
[11]  Gamburzev S, Appleby A J. Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC)[J]. Journal of Power Sources, 2002, 107(1): 5-12.
[12]  Passalacqua E, Lufrano F, Squadrito G, et al. Nafion content in the catalyst layer of polymer electrolyte fuel cells: Effects on structure and performance[J]. Electrochimica Acta, 2001, 46(6): 799-805.
[13]  Wei Z D, Ran H B, Liu X A, et al. Numerical analysis of Pt utilization in PEMFC catalyst layer using random cluster model[J]. Electrochimica Acta, 2006, 51(15): 3091-3096.
[14]  Ioselevich A, Komyshev A, Lehnert W. Phase segregation of LixMn2O4 (0.6
[15]  Kim H S, Subramanian N P, Popov B N. Preparation of PEM fuel cell electrodes using pulse electrodeposition[J]. Journal of Power Sources, 2004, 138(1/2): 14-24.
[16]  Ye F, Chen L, Li J J, et al. Shape-controlled fabrication of platinum electrocatalyst by pulse electrodeposition[J]. Electrochemistry Communications, 2008, 10(3): 476-479.
[17]  Wei Z D, Chen S G, Liu Y, et al. Electrodepositing Pt by modulated pulse current on a nafion-bonded carbon substrate as an electrode for PEMFC[J]. Journal of Physical Chemistry C, 2007, 111(42): 15456-15463.
[18]  Talor E J, Anderson E B, Vilambi N R K. Preparation of high-platinum-utilization gas diffusion electrodes for proton exchange-membrane fuel cells[J]. Journal of the Electrochemical Society, 1992, 139(5): L45-L46.
[19]  Xi J Y, Wang J S, Yu L H, et al. Facile approach to enhance the Pt utilization and CO-tolerance of Pt/C catalysts by physically mixing with transition-metal oxide nanoparticles[J]. Chemical Communications, 2007, 16: 1656-1658.
[20]  Tang J M, Jensen K, Waje M, et al. High performance hydrogen fuel cells with ultralow Pt loading carbon nanotube thin film catalysts[J]. Journal of Physical Chemistry C, 2007, 111(48): 17901-17904.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133