全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2014 

单极脉冲一步合成聚苯胺/铁氰化镍杂化膜及其过氧化氢电催化还原活性

DOI: 10.13208/j.electrochem.140311, PP. 563-570

Keywords: 单极脉冲,聚苯胺,铁氰化镍,杂化膜,过氧化氢

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用单极脉冲法在铂基体表面一步合成聚苯胺/铁氰化镍(PANI/NiHCF)有机-无机杂化膜,并分析了杂化膜高电势静电吸引沉积机理.高电压聚合杂化膜避免了Fe(CN)63-的还原,并形成单一“不可溶”结构NiHCF.用扫描电镜(SEM)、X射线能谱仪(EDS)和傅立叶变换红外(FT-IR)光谱研究了杂化膜表面形貌及组成,并考察了不同单极脉冲电压制得杂化膜的电化学性能.结果表明,单极脉冲电压1.0V制得的PANI/NiHCF杂化膜有最佳的电活性和良好的稳定性.使用计时电流法考察了杂化膜电极的过氧化氢(H2O2)的电催化还原活性,在0.5mol·L-1KCl+0.5mol·L-1HCl电解液中,PANI/NiHCF杂化膜电极过氧化氢催化还原电流与其浓度(4.0×10-4~1.6×10-2mol·L-1)呈良好的线性关系,相关性系数R=0.9991,检出限为6.09×10-5mol·L-1,灵敏度为1075mA·(mol·L-1)-1·cm-2.

References

[1]  Zamponi S, Berrettoni M, Kulesza P J, et al. Influence of experimental conditions on electrochemical behavior of Prussian blue type nickel hexacyanoferrate film[J]. Electrochimica Acta, 2003, 48(28): 4261-4269.
[2]  Chen W, Tang J, Xia X H. Composition and shape control in the construction of functional nickel hexacyanoferrate nanointerfaces[J]. The Journal of Physical Chemistry C, 2009, 113(52): 21577-21581.
[3]  Hao X G(郝晓刚), Guo J X(郭金霞), Liu S B(刘世斌), et al. Electrochemically switched ion exchange performances of capillary deposited nickel hexacyanoferrate thin films[J]. Transactions of Nonferrous Metals Society of China (中国有色金属学报), 2006, 16(3): 556-561.
[4]  Hao X G, Yan T, Wang Z D, et al. Unipolar pulse electrodeposition of nickel hexacyanoferrate thin films with controllable structure on platinum substrates[J]. Thin Solid Films, 2012, 520(7): 2438-2448.
[5]  Chen W, Tang J, Cheng H J, et al. A simple method for fabrication of sole composition nickel hexacyanoferrate modified electrode and its application[J]. Talanta, 2009, 80(2): 539-543.
[6]  Chen W, Xia X H. Highly stable nickel hexacyanoferrate nanotubes for electrically switched ion exchange[J]. Advanced Functional Materials, 2007, 17(15): 2943-2948.
[7]  Sitnikova N A, Borisova A V, Komkova M A, et al. Superstable advanced hydrogen peroxide transducer based on transition metal hexacyanoferrates[J]. Analytical chemistry, 2011, 83(6): 2359-2363.
[8]  Fiorito P A, Córdoba de Torresi S I. Hybrid nickel hexacyanoferrate/polypyrrole composite as mediator for hydrogen peroxide detection and its application in oxidase-based biosensors[J]. Journal of Electroanalytical Chemistry, 2005, 581(1): 31-37.
[9]  Ma X L(马旭莉), Sun S B(孙守斌), Wang Z D(王忠德), et al. Electrocatalytic oxidation of ascorbic acid on carbon nanotube/cubic nickel cyanoferrate/polyaniline hybrid films[J]. New Carbon Materials(新型炭材料), 2013, 28(1): 26-32.
[10]  Wang X, Zhang Y, Banks C E, et al. Non-enzymatic amperometric glucose biosensor based on nickel hexacyanoferrate nanoparticle film modified electrodes[J]. Colloids and surfaces B: Biointerfaces, 2010, 78(2): 363-366.
[11]  Li Y, Zhao K, Du X, et al. Capacitance behaviors of nanorod polyaniline films controllably synthesized by using a novel unipolar pulse electro-polymerization method[J]. Synthetic Metals, 2012, 162(1/2): 107-113.
[12]  Peng X Y, Luan F, Liu X X, et al. pH-controlled morphological structure of polyaniline during electrochemical deposition[J]. Electrochimica Acta, 2009, 54(26): 6172-6177.
[13]  Wang Z D, Sun S B, Hao X G, et al. A facile electrosynthesis method for the controllable preparation of electroactive nickel hexacyanoferrate/polyaniline hybrid films for H2O2 detection[J]. Sensors and Actuators B: Chemical, 2012, 171(26): 1073-1080.
[14]  Zou Y J, Sun L X, Xu F. Prussian Blue electrodeposited on MWNTs-PANI hybrid composites for H2O2 detection[J]. Talanta, 2007, 72(2): 437-442.
[15]  Zang Y(臧杨), Hao X G(郝晓刚), Wang Z D(王忠德), et al. Copolymerization and capacitive performance of composite carbon nanotubes/polyaniline/nickel hexacyanoferrate films[J]. Acta Physico-Chimica Sinica(物理化学学报), 2010, 26(2): 291-298.
[16]  Hao X G, Li Y G, Pritzker M. Pulsed electrodeposition of nickel hexacyanoferrate films for electrochemically switched ion exchange[J]. Separation and Purification Technology, 2008, 63(2): 407-414.
[17]  Li Y(李越), Hao X G(郝晓刚), Wang Z D(王忠德), et al. Unipolar pulse electrochemical polymerization of polyaniline nanofiber films for supercapacitor applications[J]. CIESC Journal(化工学报), 2010, 61(S1): 120-125.
[18]  Li X M, Du X, Wang Z D, et al. Electroactive NiHCF/PANI hybrid films prepared by pulse potentiostatic method and its performance for H2O2 detection[J]. Journal of Electroanalytical Chemistry, 2014, 717: 69-77.
[19]  ?eděnková I, Trchová M, Stejskal J. Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water—FTIR and Raman spectroscopic studies[J]. Polymer Degradation and Stability, 2008, 93(12): 2147-2157.
[20]  Chen X, Chen Z, Tian R, et al. Glucose biosensor based on three dimensional ordered macroporous self-doped polyaniline/Prussian blue bicomponent film[J]. Analytica Chimica Acta, 2012, 723: 94-100.
[21]  Lin Y, Cui X. Electrosynthesis, characterization, and application of novel hybrid materials based on carbon nanotube-polyaniline-nickel hexacyanoferrate nanocomposites[J]. Journal of Materials Chemistry, 2006, 16(6): 585-592.
[22]  Hu Z A, Xie Y L, Wang Y X, et al. Polyaniline/SnO2 nanocomposite for supercapacitor applications[J]. Materials Chemistry and Physics, 2009, 114(2/3): 990-995.
[23]  Kulesza P J, Skunik M, Baranowska B, et al. Fabrication of network films of conducting polymer-linked polyoxometallate-stabilized carbon nanostructures[J]. Electrochimica Acta, 2006, 51(11): 2373-2379.
[24]  Wang Z D, Feng Y T, Hao X G, et al. A novel potential-responsive ion exchange film system for heavy metal removal[J]. Journal of Materials Chemistry A, 2014, 2(26): 10263-10272.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133