全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2014 

基于碳纳米管的高灵敏度免标记电化学核酸适体传感电极

DOI: 10.13208/j.electrochem.131161, PP. 386-391

Keywords: 核酸适体,腺苷,免标记,碳纳米管

Full-Text   Cite this paper   Add to My Lib

Abstract:

以电活性钌化合物[Ru(NH3)6]3+为信号传感源,借助碳纳米管构建了高灵敏检测腺苷免标记电化学传感电极(BSA/Apt/CNTs/GC).BSA/Apt/CNTs/GC电极在最佳实验条件下检测腺苷线性范围为5.0×10-11~1.0×10-7mol·L-1,检测下限为2.7×10-11mol·L-1.该传感电极有较高的灵敏度、良好的选择性、重现性和稳定性.与传统标记型适体传感电极相比,其制作简便,也许还适用于其他小分子和蛋白质的检测,有一定的普适性.

References

[1]  Liu J, Lu Y. Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor[J]. Analytical Chemistry, 2004, 76(6): 1627-1632.
[2]  McMillan M R, Burnstock G, Haworth S G. Vasodilatation of intrapulmonary arteries to P2-receptor nucleotides in normal and pulmonary hypertensive newborn piglets[J]. British Journal of Pharmacology, 1999, 128(3): 543-548.
[3]  Wu Z S, Guo M M, Zhang S B, et al. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers[J]. Analytical Chemistry, 2007, 79(7): 2933-2939.
[4]  Bennett H J, White T D, Semba K. Activation of metabotropic glutamate receptors increases extracellular adenosine in vivo[J]. NeuroReport, 2000, 11(16): 3489-3492.
[5]  Craig C G, White T D. NMDA-evoked adenosine release from rat cortex does not require the intermediate formation of nitric oxide[J]. Neuroscience Letters, 1993, 158(2): 167-169.
[6]  Wilson D S, Szostak J W. In vitro selection of functional nucleic acids[J]. Annual Review Biochemistry, 1999, 68: 611-647.
[7]  Liu J, Cao Z, Lu Y. Functional nucleic acid sensors[J]. Angewandte Chemie International Edition, 2009, 109(5): 1948-1998.
[8]  Wang J, Jiang Y, Zhou C, et al. Aptamer-based ATP assay using a luminescent light switching complex[J]. Analytical Chemistry, 2005, 77(11): 3542-3546.
[9]  Xiao Y, Heeger A J, Plaxco K W, et al. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement[J]. Journal of the American Chemical Society, 2005, 127(51): 17990-17991.
[10]  Radi A E, Acero Sánchez J L, Baldrich E, et al. Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor[J]. Journal of the American Chemical Society, 2006, 128(1): 117-124.
[11]  Urata H, Nomura K, Akagi M, et al. Fluorescent-labeled single-strand ATP aptamer DNA: Chemo- and enantio-selectivity in sensing adenosine[J]. Biochemical and Biophysical Research Communications, 2007, 360(2): 459-463.
[12]  Chen J W, Liu X P, Feng K J, et al. Detection of adenosine using surface-enhanced Raman scattering based on structures-witching signaling aptamer[J]. Biosensors and Bioelectronics, 2008, 24(1): 66-71.
[13]  Ho D, Falter K, Severin P, et al. DNA as a force sensor in an aptamerbased biochip for adenosine[J]. Analytical Chemistry, 2009, 81(8): 3159-3164.
[14]  Zheng F, Wu Z S, Zhang S B, et al. Aptamer based electrochemical biosensors for highly selective and quantitative detection of adenosine[J]. Chemical Research in Chinese Universities, 2008, 24(2): 138-142.
[15]  Deng Q, Watson C J, Kennedy R T. A ptamer affinity chromatography for rapid assay of adenosine in microdialysis samples collected in vivo[J]. Journal of Chromatography A, 2003, 1005(1/2): 123-130.
[16]  Zhou L, Ou L J, Chu X, et al. Aptamer-based rolling circle amplification: A platform for electrochemical detection of protein[J]. Analytical Chemistry, 2007, 79(19): 7492-7500.
[17]  Shlyahovsky B, Li D, Weixmann Y. Splotlighting of cocaine by an autonomous aptamer-based machine[J]. Journal of the American Chemical Society, 2007, 129(13): 3814-3815.
[18]  Weizmann Y, Beissenhirtz M K, Cheglakov Z, et al. A virus spotlighted by an autonoumous DNA machine[J]. Angewandte Chemie International Edition, 2006, 45(44): 7384-7388.
[19]  Li B L, Wang Y L, Wei H, et al. Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model[J]. Biosensors and Bioelectronics, 2007, 23(7): 965-970.
[20]  Xu D K, Xu, D W, Yu X B, et al. Label-free electrochemical detection for aptamer-based array electrodes[J]. Analytical Chemistry, 2005, 77(16): 5107-5113.
[21]  Wang D Y, Lai B Y, Sen D. A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes[J]. Journal of Molecular Biology, 2002, 318(1): 33-43.
[22]  Zhao W, Ali M M, Aguirre S D, et al. Paper-based bioassays using gold nanoparticle Colorimetric probe[J]. Analytical Chemistry, 2008, 80(22):8431-8437.
[23]  Wang J L, Munir A, Zhu Z Z, et al. Magnetic nanoparticle enhanced surface plasmon resonance sensing and its application for the ultrasensitive detection of magnetic nanoparticle-enriched small molecules[J]. Analytical Chemistry, 2010, 82(16): 6782- 6789.
[24]  Feng K J, Sun C H, Kang Y, et al. Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement[J]. Electrochemistry Communications, 2008, 10(4): 531-535.
[25]  Chen J W, Liu X P, Feng K J. Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer[J]. Biosensors and Bioelectronics, 2008, 24(1): 66-71.
[26]  Zhao W J, Chiuman W, Lam J C F, et al. DNA aptamer folding on gold nanoparticles: From colloid chemistry to biosensors[J]. Journal of the American Chemical Society, 2008, 130(11): 3610-3618.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133