Helmolt R V, Eberle U. Fuel cell vehicles: Status 2007[J]. Journal of Power Sources, 2007, 165(2): 833-843.
[2]
Xin Y C, Liu J G, Jie X, et al. Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts[J]. Electrochimica Acta, 2012, 60: 354-358.
[3]
Liu W M, Xie Y, Liu J G, et al. Experimental study of proton exchange membrane fuel cells using Nafion 212 and Nafion 211 for portable application at ambient pressure and temperature conditions[J]. International Journal of Hydrogen Energy, 2012, 37(5): 4673-4677.
[4]
Ye J L, Liu J G, Zou Z G, et al. Preparation of Pt supported on WO3-C with enhanced catalytic activity by microwave-pyrolysis method[J]. Journal of Power Sources, 2010, 195(9): 2633-2637.
[5]
Wu B B, Li B, Liu W M, et al. The performance improvement of membrane and electrode assembly in open-cathode proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2013, 38(25): 10978-10984.
[6]
Tiido K, Alexeyeva N, Couillard M, et al. Graphene-TiO2 composite supported Pt electrocatalyst for oxygen reduction reaction[J]. Electrochimica Acta, 2013, 107: 509-517.
[7]
Liu X, Chen J, Liu G, et al. Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt/TiO2/C catalysts[J]. Journal of Power Sources, 2010, 195(13): 4098-4103.
[8]
Xia B Y, Wu H B, Chen J S, et al. Formation of Pt-TiO2-rGO 3-phase junctions with significantly enhanced electro-activity for methanol oxidation[J]. Physical Chemistry Chemical Physics, 2012, 14(2): 473-476.
[9]
Fan Y, Yang Z J, Huang P, et al. Pt/TiO2-C with hetero interfaces as enhanced catalyst for methanol electrooxidation[J]. Electrochimica Acta, 2013, 105: 157-161.
[10]
Xin Y C, Liu J G, Zhou Y, et al. Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell[J]. Journal of Power Sources, 2011, 196(3): 1012-1018.
[11]
Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[12]
Tu W G, Zhou Y, Liu Q, et al. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-Graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane[J]. Advanced Functional Materials, 2013, 23(14): 1743-1749.
[13]
Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339.
[14]
Montero-Ocampo C, Vargas Garcia J, Arce Estrada E. Comparison of TiO2 and TiO2-CNT as cathode catalyst supports for ORR[J]. International Journal of Electrochemical Science, 2013, 8(12):1278-1280.
[15]
Shim J, Lee C R, Lee H K, et al. Electrochemical characteristics of Pt-WO3/C and Pt-TiO2/C electrocatalysts in a polymer electrolyte fuel cell[J]. Journal of Power Sources, 2001, 102(1/2): 172-177.
[16]
Zhao X, Zhu J B, Liang L, et al. Enhanced activity of Pt nano-crystals supported on a novel TiO2@N-doped C nano-composite for methanol oxidation reaction[J]. Journal of Materials Chemistry, 2012, 22(37): 19718-19725.
[17]
Qu Y T, Gao Y Z, Kong F D, et al. Pt-rGO-TiO2 nanocomposite by UV-photoreduction method as promising electrocatalyst for methanol oxidation[J]. International Journal of Hydrogen Energy, 2013, 38(28): 12310-12317.