全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2014 

结合光电化学和瞬态吸收光谱技术研究光电化学分解水载流子动力学

DOI: 10.13208/j.electrochem.130885, PP. 316-322

Keywords: 光电化学制氢,光生载流子,动力学,瞬态光电压,瞬态吸收光谱

Full-Text   Cite this paper   Add to My Lib

Abstract:

半导体光电化学制氢是一种重要的、有前景的太阳能应用技术.其产氢效率取决于光生载流子的产生、分离和传输效率.深入理解光生载流子的动力学过程对于设计高效的太阳能产氢器件有重要的指导意义.光电化学和瞬态吸收光谱技术是研究光催化反应微观动力学和机理的强有力手段.本文介绍作者应用这些技术在半导体光电化学制氢方面所取得的部分最新研究结果,并对存在的问题和今后研究重点提出了一些看法.

References

[1]  Kennedy J H, Frese K W. Photooxidation of water at α-Fe2O3 electrodes[J]. Journal of the Electrochemical Society, 1978, 125, 709-714.
[2]  Soedergren S, Hagfeldt A, Olsson J, et al. Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells[J]. Journal of Physical Chemistry, 1994, 98(21): 5552-5556.
[3]  Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems[J]. Chemical Reviews, 1995, 95(1): 49-68.
[4]  LengW H(冷文华), Zhu H Q(朱红乔). An investigation of photocatalytic degradation reactions of pollutants by combination of (photo)electrochemical measurements[J]. Journal of Electrochemistry(电化学), 2013, 19(5): 437-443.
[5]  Cowan A J, Tang J W, Leng W H, et al. Water s plitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination[J]. Journal of Physical Chemistry C, 2010, 114(9): 4208-4214.
[6]  Bisquert J, Vikhrenko V S. Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells[J]. Journal of Physical Chemistry B, 2004, 108(7): 2313-2322.
[7]  Barnes P R F, Anderson A Y, Koops S E, et al. Electron injection efficiency and diffusion length in dye-sensitized solar cells derived from incident photon conversion efficiency measurements[J]. Journal of Physical Chemistry C, 2009, 113(3): 1126-1136.
[8]  Cowan A J, Leng W, Barnes P R F, et al. Charge carrier separation in nanostructured TiO2 photoelectrodes for water splitting[J]. Physical Chemistry Chemical Physics, 2013, 15(22): 8772-8778.
[9]  Cheng X F, Leng W H, Liu D P, et al. Electrochemical preparation and characterization of surface-fluorinated TiO2 nanoporous film and its enhanced photoelectrochemical and photocatalytic properties[J]. Journal of Physical Chemistry C, 2008, 112(23): 8725-8734.
[10]  Leng W H, Barnes P R F, Juozapavicius M, et al. Electron diffusion length in mesoporous nanocrystalline TiO2 photoelectrodes during water oxidation[J]. Journal of Physical Chemistry Letters, 2010, 1(6): 967-972.
[11]  Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
[12]  Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974.
[13]  Shangguan P, Tong S, Li H, et al. Enhanced photoelectrochemical oxidation of water over undoped and Ti-doped α-Fe2O3 electrodes by electrochemical reduction pretreatment[J]. RSC Advances, 2013, 3(26): 10163-10167.
[14]  Cowan A J, Durrant J R. Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels[J]. Chemical Society Reviews, 2013, 42(6): 2281-2293.
[15]  Leng W H, Zhang Z, Zhang J Q, et al. Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy[J]. Journal of Physical Chemistry B, 2005, 109(31): 15008-15023.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133