全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2014 

自增湿阴极开放式PEMFC的温度调控

DOI: 10.13208/j.electrochem.130621, PP. 184-188

Keywords: 质子交换膜燃料电池,自增湿,输出特性曲线,最佳工作温度,温度控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

温度对自增湿阴极开放式质子交换膜燃料电池(PEMFC)的性能有着重要的影响.依据自制的常压自增湿型PEMFC及温度控制设备搭建测试平台,测试了燃料电池在不同工作温度下的输出特性曲线—伏安曲线和功率输出曲线.通过拟合得到了电极过程动力学参数,分析了工作温度影响电池性能的主要原因.

References

[1]  Srinivasan S, Velew OA, Parthasarathy A, et al. High energy efficiency and high power density proton exchange membrane fuel cells — electrode kinetics and mass transport[J]. Journal of Power Sources, 1991, 36(3): 299-320.
[2]  James L, Andrew D. Fuel cell system explained (Second edition)[M]. Chichester: John Wiley & Sons, 2003: 22-24.
[3]  Han M, Chan S H, Jiang S P. Investigation of self-humidifying anode in polymer electrolyte fuel cells[J]. International Journal of Hydrogen Energy, 2007, 32: 385-391.
[4]  Hogarth W H J, Benziger B. Operation of polymer electrolyte membrane fuel cells with dry feeds: Design and operating strategies[J]. Journal of Power Sources, 2006, 159(2): 968-978.
[5]  Li H, Tang Y H, Wang Z W, et al. A review of water flooding issues in the proton exchange membrane fuel cell[J]. Journal of Power Sources, 2008, 178(1): 103-117.
[6]  Atiyeh H K, Karan K, Peppley B. Experimental investigation of the role of a micro porous layer on the water transport and performance of a PEM fuel cell[J]. Journal of Power Sources, 2007, 170(1):111-121.
[7]  Zawodzinski T A (Jr.), Derouin C, Radzinski S, et al. Water uptake by and transport through nafion? 117 membranes[J]. Journal of The Electrochemical Society, 1993, 140(4): 1041-1047.
[8]  Zawodzinski T A (Jr.), Springier T E, Davey J, et al. A comparative study of water uptake by and transport through ionomeric fuel cell membranes[J]. Journal of Electrochemical Society, 1993, 140(7): 1981-1985.
[9]  Zawodzinki T A. Effects of water on the properties of polymer exchange membrane in fuel cell[J]. Solid State Ionics, 1993, 60: 199-201P.
[10]  Ciureanu M, Roberge R. Electrochemical impedance study of PEM fuel cells. Experimental diagnosis and modeling of air cathodes[J]. Journal of Physical Chemistry B, 2001, 105(17): 3531-3539.
[11]  Ge S H(葛善海), Yi B L(衣宝廉), Xu H F(徐洪峰). Model of water transport for proton-exchange membrane fuel cell (PEMFC)[J]. Journal of Chemical Industry and Engineering (化工学报), 1999, 50(1): 39-47.
[12]  Buchi F N, Srinivasan S. Operating proton exchange membrane fuel cells without external humidification of the reactant gases - Fundamental aspects [J]. Journal of The Electrochemical Society, 1997, 144(8): 2767-2772.
[13]  Bemad D M, Verbrugge M W. A mathematical model of the solid-polymer-electrolyte fuel cell[J]. Journal of The Electrochemical Society, 1992, 139(9): 2477-2491.
[14]  Yu J R(于景荣), Yi B L(衣宝廉), Han M(韩明), et al. Operating proton exchange membrane fuel cells without external humidification[J]. Chinese Journal of Power Sources(电源技术), 2001, 25(5): 327-329.
[15]  Chan S H, Han M, Jiang S P. Guidelines for stable operation of a polymer electrolyte fuel cell with self-humidifying membrane electrolyte assembly[J]. Journal of the Electrochemical Society, 2007, 154(5): B486-B493.
[16]  Riascos L A M, Pereira D D. Limit operating temperature in polymer electrolyte membrane fuel cells[J]. Journal of the Electrochemical Society, 2009, 156(9): B1051-B1058.
[17]  Srinivasan S, Ticianelli EA, Derouin C R, et al. Advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes[J]. Journal of Power Sources, 1988, 22(3/4): 359-375.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133