全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于LEPP递变的四面体网格自适应剖分算法

DOI: 10.11834/jig.20081223

Keywords: 网格剖分,网格优化,有限元建模

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了更合理地进行四面体网格剖分,提出了一种根据待剖分对象形态不同进行网格密度自适应调整的四面体网格剖分方法。该方法首先采用BCC(bodycenteredcubic)网格初始化网格空间,并根据表面曲率的大小以及距离物体表面的远近,采用LEPP(longestedgepropagationpath)算法由外至内对初始化后的网格空间进行不同尺度的细分;然后对横跨表面的网格进行调整,以形成对象的表面形态;最后采用以质量函数引导的拉普拉斯平滑与棱边收缩(edgecollapse)的方法对网格的质量进行优化来最终得到待剖分对象的四面体网格。结果表明,该方法所生成的网格不仅具有自适应的网格密度,而且网格质量比常用的AdvancingFront算法也有所提高。对于基于3维断层图像或表面模型进行有限元建模,该方法不失为一种行之有效的好方法。

References

[1]  Mark D, Dennis D G. Toward optimal mesh quality improvements for adaptive finite element electromagnetics with tetrahedral [J]. IEEE Transactions on Magnetics, 2004, 40 (2) :989 - 992.
[2]  Zhang Y C, Zhu S A , He B. A second-order finite element algorithm for solving the three-dimensional EEG forward problem [J]. Physics in Medicine and Biology,2004, 49 (4) :2975 - 2987.
[3]  杨晓松 申皓 唐泽圣.基于分类体数据的四面体网格剖分算法[J].中国图象图形学报,2002,7A(9):865-875.
[4]  Lohner R, Pafikh P. Generation of three-dimensional unstructured grids by the advancing front method [J]. International Journal for Numerical Methods in Fluids, 1988, 8 ( 10) : 1135 - 1149.
[5]  Woo Y C, Dae Y K, Young T I, et al. Tetrahedral mesh generation based On adyanclng front technique and optimization\\' scheme[J]. International Journal for Numerical Methods in Engineering, 2003, 58(12) :185 - 1872.
[6]  Mootz D, Wussow H G. Crystal structures of pyridine and pyridine trihydrate [J]. Journal of Chemical Physics, 1981, 75(3) : 1517 - 1522.
[7]  Rivara M C. New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations [J]. International Journal for Numerical Methods in Engineering, 1997,40 (18) :3313 - 3324.
[8]  Tizzard A, Horesh L, Yerworth R J, et al. Generating accurate finite element meshes for theforward model of the human head in EIT [J]. Physiological Measurement,2005, 26 (2) :251 - 261.
[9]  Molinari J F, Ortiz M. Three-dimensional adaptive meshing by subdivision and edge-collapse in finite deformation dynamic-plasticity problems with application to adiabatic shear banding [J]. International Journal for Numerical Methods in Engineering, 2002, 53(5) : 1101 - 1126.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133