全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于统计特性的小波噪声抑制在低剂量CT中的应用

DOI: 10.11834/jig.20080506

Keywords: X线断层成像,投影域,图像去噪,小波变换,贝叶斯估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

较高的照射剂量限制了X线断层成像(computedtomography,CT)技术在筛查及体检中的应用,目前临床常采用降低剂量的解决方案,但CT图像质量亦有明显下降。为提高低剂量CT的重建质量,提出了一种基于投影数据统计特性的小波去噪算法。通过分析低剂量投影数据的噪声特性,发现在投影域其噪声均值和方差接近非线性高斯分布,根据非平稳噪声在平稳小波域中的性质,结合贝叶斯估计方法对小波系数进行基于最小均方误差的自适应滤波,实现了图像信噪分离的目的。滤波完成后,采用常规滤波反投影(FBP)法重建CT图像。较传统算法,该方法具有较高的信噪比,实验结果表明,该算法能够有效地抑制噪声,且较好地保留图像细节。

References

[1]  Naidich D,Marshall C,Gribbinc A,et al.Low does CT of the lungs:preliminary observations[J].Radiology,1990,175 (6):729 ~ 731.
[2]  Donoho D.Denoising by soft-thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613 ~627.
[3]  Nason G,Silverman B.The stationary wavelet transform and somestatistical applications in wavelet and statistics[A].In:Lecture Notes in Statistics[M],Berlin,Germany:Spingcr Verlag,1995:281~299.
[4]  Simoncelli E,Adalson E.Noise removal via Bayesian wavelet coring[A].In:Proceedings of 3rd IEEE International.Conference on Image Processing[C],Lausanne,Switzerland,1996:379 ~ 382.
[5]  Mallat S.Theory for multi-resolution signal decomposition:The wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11 (7):674 ~ 693.
[6]  Mihcak M,Kozintsev I,Ramchandran K,et al.Low-complexity image denoising based on statistical modeling of wavelet coefficients[J].IEEE Signal Processing Letters,1999,6(12):300 ~303.
[7]  Lu H,Li X,Hsiao I,Liang Z.Analytical noise treatment for low-dose CT projection data by penalized weighted least-square smoothing in the K-L domain[A].In:Proceedings of SPIE Medical Imaging 2002[C],San Diego,California,USA,2002,4682:146~152.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133