Turk M,Pentland A.Eigenfaces for recognition[J].Journal Cognitive Neuroscience,1991,3(1):71~86.
[2]
Be]humeur P,Hesponha J,Kriegman D.Eigenfaces vs.Fishedaces:recognition using class specific linear projection[J].IEEE Transac-tions on Pattern Analysis and Machine Intelligence,1997,19(7):711~720.
[3]
Saul L K,Roweis S T.Think globally,fit locaUy:unsupervised learn-ing of low dimensional manifolds[J].Machine Learning Research,2003,4(6):119~155.
[4]
Belkin M,Niyogi P.Laplacian eigenmape for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373~1396.
[5]
He X,Niyogl P.Locality Preserving Projections[A].In:Proceed-ings Conference of Advances in Neural Information Processing Sys-tems[C],Vonconvcr,Canada,2003:321~328.
[6]
Mursse H,Nayar S K.Vissual learning and recognition of 3-D objects from appearance[J].International Journal of Computer Vision,1995,14(1):5~24.
[7]
Chang Y,Hu C,Turk M.Manifold of Facial Expression[A].In:Pro-ceeding of IEEE International Workshop on Analysis and Modeling of Faces and Gestures[C],Nice,France,2003:203~205.
[8]
Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290:2323~2326.
[9]
Tenenbanm J B,Silva V De,Langford J C.A global fecmetric frame-work for nonlinear dimensinnality reduction[J].Science,2000,290:2319~2322.
[10]
He X,Yang S,Hu Y,et al.Face recognition using laplacianfaces[J].IEEE Transanctions on Pattern Analysis and Machine Intelligence,2005,27(3):328~340.