全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种新的道路交通背景提取算法及研究

DOI: 10.11834/jig.20080336

Keywords: 背景提取,运动目标检测,背景差分,灰度图像

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于视频的道路运动目标检测是智能交通系统的基础部分,目前最常用也最有效的运动目标检测方法是背景差分算法,其中背景提取是背景差分算法的关键一环。提出了一种新的背景提取算法――mode算法。定义了算法比较标准,并据此比较了mode算法以及一些目前流行的背景提取算法在不同车流量情况下的性能优劣。通过比较发现,在低车流量时,中值法提取的背景较好,mode算法次之;在高车流量时,用mode算法提取的背景最好。

References

[1]  袁基炜 史忠科.-种快速运动目标的背景提取[J].计算机应用研究,2004,(8):128-129.
[2]  Power P Wayne, Schoonees Johann A. Understanding background mixture models for foreground segmentation [ A ]. In : Proceedings of Image and Vision Computing [ C ]. Auckland, New Zealand, 2002 : 267 - 271.
[3]  Elgammal Ahmed M. Efficient Nonparametric Kernel Density Estimation for Real Time Computer Vision [ D ]. Ann Arbor, MI, USA: ProQuest Information and Learning Company,2002.
[4]  Surendra Gupte, Osama Masoud, Robert F K Martin, et al. Detection and classification of vehicles [ J ]. IEEE Transactions on Intelligent Transportation Systems,2002,3 ( 1 ) :37 - 47.
[5]  Friedman Nir,Russell Stuart. Image segmentation in video sequences: A probabilistic approach [ A ] . In: Proceedings of UAI\\'97 the Thirteernth Annual Conference on Vncertainty Artificial Intelligendce [ C ]. Providence, Rhode Island, USA, 1997 : 175 - 181.
[6]  Elgammal Ahmed M, Harwood David, Davis Larry. Non-parametric model for background subtraction [ A ] . In: Proceedings of ECCV\\'2000 the Sixth European Conference on Computer Vision [ C ]. Dublin Ireland ,2000:751 - 767.
[7]  Koller D, Heinze N, Nagel H-H. Algorithmic characterization of vehicle trajectories from image sequences by motion verbs [ A ]. Proceedings of In: CVPR\\'91 IEEE computer society conference on Computer Vision and Pattern Recognition [ C ]. Maul, HI, USA, 1991:90 - 95.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133