全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

稀疏光流快速计算的动态目标检测与跟踪

DOI: 10.11834/jig.20131207

Keywords: 稀疏光流,快速计算,特定像素,目标检测,运动跟踪

Full-Text   Cite this paper   Add to My Lib

Abstract:

动态目标的检测与跟踪作为图像处理和计算机视觉学科的重要分支,广泛应用于军事和民用等各个领域。提出一种基于稀疏光流快速计算的目标检测和跟踪新方法,该方法通过计算能反映图像特征的特定像素点光流矢量来实现目标检测和跟踪,同时结合图像金字塔技术,可以检测和跟踪运动速度更快、运动尺度更大的目标。将该方法分别与稠密光流方法和基于颜色特征方法进行对比,结果表明该方法有计算量小、能很好应对目标遮挡情况和能检测并跟踪运动速度较快的目标等诸多优点。在多种条件下对该方法进行了实验验证,跟踪准确率都能达到80%以上,且基本能符合实时性的要求,说明该方法具有可行性和实用价值。

References

[1]  Song L, Huang X L, Shen L S. Summary of video monitoring system[J]. Measurement and Control Technology, 2003, 22 (5) :33-35.[宋磊, 黄祥林, 沈兰荪. 视频监控系统概述[J]. 测控技术, 2003, 22 (5) :33-35.]
[2]  Hue C, Le Cadre J-P, Perez P, et al. Tracking multiple objects with particle filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38 (3) :791-812.
[3]  Horn B K P, Schunck B G. Determining optical flow[J]. Artificial Intelligence, 1981, 17:185-203.
[4]  Wang H. Research on optical flow computation of video and image. Changsha:National University of Defense Technology, 2007.[王晖. 视频图像的光流计算方法研究. 湖南:国防科技大学, 2007.]
[5]  Bruhn A, Weickert J. Combining local and global optic flow methods[J]. International Journal of Computer Vision, 2005, 61 (3) :211-231.
[6]  Nagel H H, Enkelmann W. An investigation of smoothness constraints for the estimation of displacement vector field from image sequences[J]. IEEE Trans.on Pattern Analyze and Machine Intelligence, 1986, 8 (5) :565-593.
[7]  Black M J, Anandan P. The robust estimation of multiple motions: parametric and piecewise-smooth flow fields[J]. Computer Vision and Image Understanding, 1996, 63 (1) :75-104.
[8]  Huang Z, Xu Y, Yang X K, et al. Method for opposing flow abnormal event detection based on optical flow[J]. Video Application & Project, 2011, 35 (13) :102-105.[黄佐, 徐奕, 杨小康, 等. 一种基于光流法的逆行异常事件检测方法[J]. 视频应用于工程, 2011, 35 (13) :102-105.]
[9]  Yuan H W, Lu Y, Mao H C, et al. A Small moving object extraction algorithm based on optical flow[J]. Optics & Optoelectronic Technology, 2012, 1 (10) :67-70.[袁红卫, 卢雁, 毛海岑, 等. 基于光流的运动小目标检测算法[J]. 光学与光电技术, 2012, 1 (10) :67-70. ]
[10]  Chen E, Xu Y, Yang X K, et al. Quaternion based optical flow estimation for robust object tracking[J]. Digital Signal Processing, 2013, 23 (1) :118-125.
[11]  Bradski G, Kaebler A. Learning OpenCV[M]. USA:O\'Reilly Media Inc., 2009:1-2.
[12]  Lucas B, Kanade T. An iterative image registration technique with an application to stereo vision[C]//Proceedings of DARPA Image Understanding WorkShop. San Francisco, USA:Morgan Kaufmann Publishers Inc., 1981, 121-130.
[13]  Harris C, Stephens M. A combined corner and edge detector[C]//Proceedings of the 4th Alvey Vision Conference. UK:The Plessey Company Plc., 1988, 147-151.
[14]  Wei B G, Li J. Fast optical flow algortthm for large-scale motion[J]. Application Research of Computer, 2012, 9 (29) :3551-3557.[卫保国, 李晶. 一种针对大尺寸运动的快速光流算法[J]. 计算机应用研究, 2012, 9 (29) :3551-3557.]
[15]  Tao L. Image information extraction based on optical flow technology[D]. Wuhan:Huazhong University of Science and Technology, 2005.[陶琳. 基于光流技术的图像信息提取[D]. 武汉:华中科技大学, 2005.]
[16]  Lian H S, Qiao B, Hu P, et al. A visual object tracking algorithm based on features of color and profile[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2004, 31 (3) :77-80.[连红森, 乔兵, 胡鹏, 等. 基于颜色和轮廓特征的目标视觉跟踪算法研究[J]. 弹箭与制导学报, 2011, 31 (3) :77-80.]
[17]  Tu D W, Jiang J L. Improved algorithm for motion image analysis based on optical flow and its application[J]. Optics and Precision Engineering, 2011, 19 (5) :1159-1164.
[18]  Chu J, Shi M, Fu X. Detection of moving target in dynamic background based on optical flow[J]. Journal of Nanchang Hangkong University: Natural Sciences, 2011, 25 (3) :1-6.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133