全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

PCA-NLM的纺织品缺陷检测

DOI: 10.11834/jig.20131204

Keywords: 纺织品缺陷,纹理增强,类可分离性,非局部均值,主成分分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

在纺织品自动检测过程中,采集的图像容易受到噪声及织物表面材质的干扰,为解决这一问题,提出一种混合方法进行纺织品缺陷检测,将图像增强和缺陷检测方法进行混合处理,在非局部均值滤波算法(NLM)的相似度评价中引入主成分分析(PCA)进行去噪处理,采用的PCA-NLM混合模型有效增强了缺陷区域的灰度共生矩阵纹理特征,提高了缺陷纹理和无缺陷纹理之间的类可分离性。通过对7类缺陷的纺织品图像检测实验分析表明,相比单一的非混合方法,本文的混合模型有效提高了纺织品缺陷的检测正确率。

References

[1]  Bodnarova A, Bennamoun M, Latham S. Optimal Gabor filters for textile flaw detection[J]. Pattern Recognition, 2002, 35 (12) :2973-2991.
[2]  Mak K L, Peng P. An automated inspection system for textile fabrics based on Gabor filters[J]. Robotics and Computer-Integrated Manufacturing, 2008, 24 (3) :359-369.
[3]  Yang X Z, Pang G, Yung N. Robust fabric defect detection and classification using multiple adaptive wavelets[J]. IEEE Proceedings-Vision, Image, and Signal Processing, 2005, 152 (6) :715-723.
[4]  Latif-Amet A, Ertuzun A, Ercil A. An efficient method for texture defect detection:sub-band domain co-occurrence matrices[J]. Image and Vision Computing, 2000, 18 (6) :543-553.
[5]  Hsieh C H, Chen B C. Detail aware contrast enhancement with linear image fusion[C]//The 2010 International Symposium on Aware Computing. Sapporo, Japan:IEEE Computer Society, 2010:1-5.
[6]  Pu Y F, Zhou J L, Yuan X. Fractional differential mask:a fractional differential based approach for multi-scale texture enhancement[J]. IEEE Transactions on Image Processing, 2010, 19 (2) :491-511.
[7]  Bao X M, Zhang Y H, Wang Y M.Enhancement of textile images based on discrete gaussian filter[J]. Journal of Textile Research, 2005, 26 (4) :121-123.[包晓敏, 张云华, 汪亚明. 基于离散高斯滤波器的纺织品图像增强[J]. 纺织学报, 2005, 26 (4) :121-123.]
[8]  Buades A, Coll B, Morel J M. A non-local algrithmn for image denoising[C]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego:IEEE Computer Society press, 2005:60-65.
[9]  Yang X Z, Pang G K H, Yung N H C. Discriminative training approaches to fabric defect classification based on wavelet transform[J]. Pattern Recognition, 2004, 37 (5) :889-899.
[10]  Coupe P, Yger P, Prima S. An optimized blockwise non local means denoising filter for 3D magnetic resonance images[J]. IEEE Transactions on Medical Imaging, 2008, 27 (4) :425-441.
[11]  Yang X Z, Tian X M, Fang J, et al. Enhancement of textile image with texture similarity[J]. Journal of Image and Graphics, 2012, 17 (2) :169-177.[杨学志, 田晓梅, 方静, 等. 引入纹理相似性的纺织品图像增强[J]. 中国图象图形学报, 2012, 17 (2) :169-177.]
[12]  Ngan H Y T, Pang G K H, Yung N H C. Ellipsoidal decision regions for motif-based, patterned fabric defect detection[J]. Patt-ern Recognition, 2010, 43 (6) :2132-2144.
[13]  Tasdizen T. Principal neighborhood dictionaries for nonlocal means image denoising[J]. IEEE Transactions on Image Processing, 2009, 18 (12) :2649-2660.
[14]  Ngan H Y T, Pang G K H, Yung N H C. Automated fabric defect detection-A review[J]. Image and Vision Computing, 2011, 29 (7) :442-458.
[15]  Chan C H, Pang G K H. Fabric defect detection by Fourier analysis[J]. IEEE Transactions on Industry Applications, 2000, 36 (5) :1267-1276.
[16]  Mak K L, Peng P, Yiu K F C. Fabric defect detection using morphological filters[J]. Image and Vision Computing, 2009, 27 (10) :1585-1592.
[17]  Bu H G, Wang J, Huang X B. Fabric defect detection based on multiple fractal features and support vector data description[J]. Engineering Applications of Artificial Intelligence, 2009, 22 (2) :224-235.
[18]  Kang Z, Shi X, Li Q, et al. Grid-based method and wavelet transform fusion of rapid detection of fabric defects[C]//Proceedings of the 2011 International Conference on Mechatronic Systems and Automation Systems. Xi\'an, China:Trans Tech Publications, 2011, 65:48-51.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133