全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多风格融合的复杂森林场景自适应可视化

DOI: 10.11834/jig.20131113

Keywords: 虚拟森林,自适应可视化,多风格融合,生成时间估算,对象重要性

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了保证森林场景可视化时的真实感,同时保持动态森林场景生成时间的恒定性,提出一种多风格融合的复杂森林场景自适应可视化方法。利用基于视距的模型分布函数来控制树木模型的分布比例,从而建立多风格融合的森林可视化模型;在此基础上,根据复杂森林场景中树木生长模型的计算时间、3维树木绘制时间的估算结果,以及树木的视觉重要性,确定生成森林场景的最佳方案。该方法能够使复杂动态森林场景的生成时间保持较好的稳定性,并且在可视化过程中根据仿真效果动态调整绘制策略。为了验证该方法的有效性和实用性,将本文方法在动态生长的森林仿真场景中进行了实验和应用。应用结果表明,多风格融合的森林场景自适应可视化方法能在保证森林场景可视化真实感的基础上,有效地提升复杂森林场景的绘制速度,使森林场景的快速漫游具有更好的稳定性和流畅性。

References

[1]  Zach C, Mantler S, Karner K. Time-critical rendering of discrete and continuous levels of detail//The ACM Symposium on Virtual Reality Software and Technology. New York: Association for Computing Machinery, 2002:1-8.
[2]  Wloka M. Dissertation proposal: time-critical graphics. Providence, Rhode Lsland: Brown University, 1993.
[3]  Funkhouser T A, Séquin Carlo H. Adaptive display algorithm for interactive frame rates during visualization of complex virtual environments// Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. New York: Association for Computing Machinery, 1993: 247-254.
[4]  Martin I M. Hybrid transcoding for adaptive transmission of 3d content//Proceedings of IEEE International Conference on Multimedia and Expo. Piscataway, New Jersey: IEEE Press, 2002:373-376.
[5]  Li L J, Li F X, Huang T Y. A time-controlling terrain rendering algorithm[J]. Journal of System Simulation, 2006, 4270:328-337.
[6]  Cao X F, Wan G. Adaptive transmitting and rendering methods for large terrain//Proceedings of the 2nd International Conference on Computer Modeling and Simulation. Piscataway, New Jersey: IEEE Press, 2010, 3: 327-330.
[7]  Park T, Shin J, Lee S, et al. Design and implementation of adaptive rendering engine for large scale 3D-terrain data//Proceedings of IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing. Piscataway, New Jersey: IEEE Press, 2010:442-447.
[8]  Bao G B, Li H J, Zhang X P, et al. Large-scale forest rendering: real-time, realistic, and progressive[J]. Computers & Graphics, 2012, 36(3):140-151.
[9]  Liu X D, Wu J Z, Zheng C W. KD-tree based parallel adaptive rendering[J]. The Visual Computer, 2012, 28:613-623.
[10]  Zhang Y T. Time-critical adaptive visualization method of 3D city models. Wuhan: Wuhan University, 2008.[张叶廷.3维城市模型的限时自适应可视化方法.武汉:武汉大学,2008.]
[11]  Shen H C, Huang S S, Hu S M. Adaptive partitioning of urban facades[J]. Journal of Computer-Aided Design & Computer Graphics, 2012, 24(2):149-151.
[12]  Livny Y, Yan F, Olson M, et al. Automatic reconstruction of tree skeletal structures from point clouds//Proceedings of ACM Transactions on Graphics. New York: Association for Computing Machinery, 2010:29(6):151.
[13]  Liu F, Hua W, Bao H J. Quad mesh based dynamic simulation of large-scale forest on GPU[J]. Journal of Computer-Aided Design & Computer Graphics, 2010, 22(10):1701-1708.
[14]  Bao G B, Li H J, Zhang X P, et al. Realistic real-time rendering for large-scale forest scenes//Proceedings of IEEE International Symposium on Virtual Reality Innovation. Piscataway, New Jersey: IEEE Press, 2011: 217-223.
[15]  Bauer S, Berger U, Hildenbrandt H, et al. Cyclic dynamics in simulated plant populations// Proceedings of Biological Sciences. London:The Royal Society of London, 2002, 269(1508): 2443-2450.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133