全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

飞行时间3维相机的多视角散乱点云优化配准

DOI: 10.11834/jig.20131107

Keywords: 多视角优化配准,最小化目标函数,全局优化,TOF相机

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对目前基于飞行时间(TOF)原理的3维相机实现物体完整表面的3维点云重建过程中,多视角散乱点云配准精度低的问题,提出一种优化配准方法。该方法通过构建一个目标功能函数,并结合相邻点云的转换矩阵对该目标函数进行最小化求解,直接获取任意位置的点云到基准点云所处坐标系的绝对转换矩阵,避免了对连续点云之间的配准而引起误差的累加。对不同的物体进行实验,实验结果表明,该方法在保证点云配准速度的同时,提高了多视角点云配准的精度,物体点云模型重建效果较好,有利于实现后期3维曲面网格的重建。

References

[1]  Gao J. Application system research on 3D reconstruction. Shandong: Shandong University, 2009:1-5.[高剑. 三维重建应用系统研究. 山东:山东大学, 2009:1-5.]
[2]  Gao J. An Introduction to Intelligent Information Processing Method[M]. Beijing: China Machine Press, 2004:11-16.[高隽. 智能信息处理方法导论[M].北京:机械工业出版社,2004:11-16.]
[3]  Yuan X. 3D laser scanning point cloud data processing and application technology.Jiangsu: Nanjing University of Science and Technology. 2006.[袁夏. 三维激光扫描点云数据处理及应用技术. 江苏:南京理工大学,2006.]
[4]  Zhang C X. 3D Reconstruction based on binocular vision. Tianjing: Tianjing University. 2010.[张春秀. 基于双目视觉的三维重建. 天津:天津大学, 2010.]
[5]  Tong J, Xiang X Q, Tian H B, et.al. 3D reconstruction of non-rigid shapes using one TOF camera[J]. Journal of Computer-Aided Design & Computer Graphics, 2011, 23(3): 377-384.[童晶, 向学勤, 田洪波,等. 利用飞行时间三维相机的非刚体形状三维重建[J]. 计算机辅助设计与图形学学报, 2011, 23(3):377-384.]
[6]  Besl P, McKay N. A method for registration of 3-D shapes[J]. Trans. PAMI, 1992, 14(2): 239-256.
[7]  Dai J L, Chen Z Y, Ye X Z. The application of ICP algorithm in point cloud alignment[J]. Journal of Image and Graphics, 2007, 12(3): 517-521.[戴静兰, 陈志杨, 叶修梓. ICP算法在点云配准中的应用[J].中国图象图形学报, 2007, 12(3): 517-521.]
[8]  Rao Z P, Liu J, Xia Y. Method of 3D recons truction[J]. Micronanoelectronic Technology, 2010, 47(9): 564-572.[饶志鹏,刘键,夏洋. 三维物体的重建方法[J]. 微纳电子技术,2010,47(9):564-572.]
[9]  Akca D. Registration of point clouds using range and intensity information // The International Workshop on Recording, Modeling and Visualization of Cultural Heritage. Ascona, Switzerland: Taylor & Francis/Balkema, Leiden, 2005:115-126.
[10]  Basdogan C, Oztireli AC. A new feature based method for robust and efficient rigid-body registration of overlapping point clouds[J]. The Visual Computer, 2008,24(7/8/9):679-688.[DOI 10.1007/s00371-008-0248-6]
[11]  Krishnan S, Lee P Y, Moore J B, et al. Global registration of multiple 3D point sets via optimization-on-a-manifold//The 3rd Eurographics Symposium on Geometry Processing. Aire-la-Ville, Switzerland:Eurographics Association, 2005: 187.
[12]  Gao J W, Deng M Z, Shi H X, et al. Total least squares fitting of point sets in md//Computer Graphics International. Beijing, China: Inst. of Comput. Technol., Chinese Acad. of Sci., 2005:82-86.
[13]  Wiklund A. Registration approaches for noisy 3D data representing natural scenes. Lulea: Lulea Tekniska Universitet, 2006.
[14]  Borrmann D, Elseberg J, Lingemann K, et al. Globally consistent 3d mapping with scan matching[J]. Robot. Auton. Syst., 2008, 56(2):130-142.[DOI: 10.1016/ j.robot.2007.07. 002]
[15]  Yang C, Medioni G. Object modeling by registration of multiple range images[J].Image and Vision Computing, 1992,10(3):145-155.[DOI: 10.1016/0262-8856(92)90066-C]
[16]  Bergevin R, Soucy M, Gagnon H, et al. Towards a general multi-view registration technique[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(5): 540-547.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133