全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多媒体技术研究:2012――多媒体数据索引与检索技术研究进展

DOI: 10.11834/jig.20131101

Keywords: 多媒体,事件检测,索引,跨媒体,检索

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着计算机网络、社交媒体、数字电视和多媒体获取设备的快速发展,多媒体数据的生成、处理和获取变得越来越方便,多媒体应用日益广泛,数据量呈现出爆炸性的增长,已经成为大数据时代的主要数据对象。然而由于多媒体数据本身的非结构化特性,使得多媒体数据的处理和检索相对困难。如何有效地存储、组织和管理这些数据,如何有效地按照多媒体的内容和特性去存取和检索这些数据,已经成为一种迫切的需求。面向大数据时代多媒体数据的索引和检索问题,围绕视频事件检测和标注、高维索引结构、跨媒体搜索3个研究方向,系统阐述了2012年度的技术发展状况,并对未来的发展趋势进行展望。

References

[1]  Aggarwal J,Cai Q. Human motion analysis: a review[C]//Proceedings of IEEE Nonrigid and Articulated Motion Workshop. New York: IEEE Press, 1997: 90-102.[DOI:10.1109/NAMW.1997.609859]
[2]  Gavrila D. The visual analysis of human movement: a survey[J]. Computer Vision and Image Understanding, 1999, 73(1): 82-98.[DOI: 10.1006/cviu.1998.0716]
[3]  Wang J J, Singh S. Video analysis of human dynamics-a survey[J]. Real-Time Imaging, 2003, 9(5): 321-346.[DOI: 10.1016/j.rti.2003.08.001]
[4]  Wang L, Hu W, Tan T. Recent developments in human motion analysis[J]. Pattern Recognition, 2003, 36(3): 585-601.[DOI: 10.1016/S0031-3203(02)00100-0]
[5]  Hu W, Tan T, Wang L, et al. A survey on visual surveillance of object motion and behaviors[J]. IEEE Systems, Man, and Cybernetics Society, 2004, 349(3): 334-352.[DOI: 10.1109/TSMCC.2004.829274]
[6]  Ronald P. Vision-based human motion analysis: an overview[J]. Computer Vision and Image Understanding, 2007, 108(1):4-18.[DOI: 10.1016/j.cviu.2006.10.016]
[7]  [JP2]Turaga P, Chellappa R, Subrahmanian V S, et al. Machine reco-[JP]gnition of human activities: A survey[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(11): 1473-1488.[DOI: 10.1109/TCSVT.2008.2005594]
[8]  Poppe R. A survey on vision-based human action recognition[J]. Image and Vision Computing, 2010, 28(6): 976-990.[DOI: 10.1016/j.imavis.2009.11.014]
[9]  Bobick A, Davis J. The recognition of human movement using temporal templates[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2001, 23(3): 257-267.[DOI: 10.1109/34.910878]
[10]  Blank M, Gorelick L, Shechtman E, et al. Actions as space-time shapes[C]//Proceedings of ICCV. New York: IEEE Press, 2005: 1395-1402.[DOI: 10.1109/ICCV.2005.28]
[11]  Ben A, Wang Z, Pandit P, et al. Human activity recognition using multidimensional indexing[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24(8): 1091-1104.[DOI: 10.1109/TPAMI.2002.1023805]
[12]  Wada T, Matsuyama T. Multi object behavior recognition by event driven selective attention method[J]. IEEE TPAMI, 2000, 22(8): 873-887.[DOI: 10.1109/34.868687]
[13]  Niebles C, Wang H, Li F. Unsupervised learning of human action categories using spatial-temporal words[J]. International Journal of Computer Vision, 2008, 79(3): 299-318.[DOI: 10.1007/s11263-007-0122-4]
[14]  Wang Y, Jiang H, Drew M S, et al. Unsupervised discovery of action classes[C]//Proceedings of CVPR. New York: IEEE Press, 2006: 1654-1661.[DOI: 10.1109/CVPR.2006.321]
[15]  Dedeoglu Y, Toreyin B, Gudukbay U, et al. Silhouette-based method for object classification and human action recognition in video[C]//Proceedings of HCI. Berlin, Heidelberg: Springer, 2006: 64-77.[DOI: 10.1007/11754336_7]
[16]  Daniel W, Edmond B. Action recognition using exemplar-based embedding[C]//Proceedings of CVPR. New York: IEEE Press, 2008: 1-7.[DOI: 10.1109/CVPR.2008.4587731]
[17]  Du T, Alexander S. Human activity recognition with metric learning[C]//Proceedings of ECCV. Berlin, Heidelberg: Springer, 2008: 548-561.[DOI: 10.1007/978-3-540-88682-2_42]
[18]  VenkateshBabu R, Ramakrishnan K R. Recognition of human actions using motion history information extracted from the compressed video[J]. Image and Vision Computing, 2004, 22(8): 597-607.[DOI: 10.1016/j.imavis.2003.11.004]
[19]  Manor Z, Irani M. Event-based analysis of video[C]//Proceedings of CVPR. New York: IEEE Press, 2001: 123-130.[DOI: 10.1109/CVPR.2001.990935]
[20]  Carlsson S, Sullivan J. Action recognition by shape matching to key frames[C]//Proceedings of Workshop on Models Versus Exemplars in Computer Vision. New York: IEEE Press, 2001: 1-8.
[21]  Laptev I,Lindeberg T. Velocity adaptation of space-time interest points[C]//Proceedings of ICPR. New York: IEEE Press, 2004: 1-4.[DOI: 10.1109/ICPR.2004.1334003]
[22]  更多...
[23]  Brand M,Kettnaker V. Discovery and segmentation of activities in video[J]. IEEE TPAMI,2000, 22(8): 844-851.[DOI: 10.1109/34.868685]
[24]  Hongeng S,Nevatia R. Large-scale event detection using semi-hidden Markov models[C]//Proceedings of ICCV. New York: IEEE Press, 2003: 1455-1462.[DOI: 10.1109/ICCV. 2003. 1238661]
[25]  Yamato J, Ohya J, Ishii K. Recognizing human action in time-sequential images using hidden Markov model[C]//Proceedings of CVPR. New York: IEEE Press, 1992: 379-385.[DOI: 10.1109/CVPR.1992.223161]
[26]  Starner T, Pentland A. Visual recognition of american sign language using hidden Markov models[C]// Proceeding of International Workshop on Automatic Face and Gesture Recognition. Zurich: University of Zurich, 1995: 189-194.
[27]  Weinland D, Boyer E, Ronfard R. Action recognition from arbitrary views using 3D exemplars[C]//Proceedings of ICCV. New York: IEEE Press, 2007: 1-7.[DOI: 10.1109/ICCV.2007.4408849]
[28]  Luo Y, Wu T, Hwang J. Object based analysis and interpretation of human motion in sports video sequences by dynamic bayesian networks[J]. Computer Vision and Image Understanding, 2003, 92(2-3): 196-216.[DOI: 10.1016/j. cviu. 2003. 08.001]
[29]  Ghahramani Z, Jordan M. Factorial hidden Markov model[J]. Machine Learning, 1997, 29(2): 245-273.[DOI: 10.1023/A:1007425814087]
[30]  Bui H, Venkatesh S, West G. Policy recognition in the abstract hidden Markov model[J]. Journal of Artificial Intelligence Research, 2002, 17: 451-499.[DOI: 10.1613/jair.839]
[31]  Michael S R, Aggarwal J K. Recognition of composite human activities through context-free grammar based representation[C]//Proceedings of CVPR. New York: IEEE Press, 2006: 1709-1718.[DOI: 10.1109/CVPR.2006.242]
[32]  Hu W, Xie T D. A hierarchical self-organizing approach for learning the patterns of motion trajectories[J]. IEEE Transactions on Neural Networks, 2004, 15(1): 135-144.[DOI: 10.1109/TNN.2003.820668]
[33]  Vail D L, Manuela M V, Lafferty J D. Conditional random fields for activity recognition[C]//Proceedings of AAMAS. New York: ACM Press, 2007: 1-8.[DOI: 10.1145/1329125. 1329409]
[34]  Sminchisescu C, Kanaujia A, Li Z, et al. Conditional models for contextual human motion recognition[C]//Proceedings of ICCV. New York: IEEE Press, 2005: 1808-1815.[DOI: 10.1109/ICCV.2005.59]
[35]  Laptev I, Marszalek M, Schmid C, et al. Learning realistic human actions from movies[C]//Proceedings of CVPR. New York: IEEE Press, 2008: 1-8.[DOI: 10.1109/CVPR. 2008. 4587756]
[36]  Liu J, Luo J, Shah M. Recognizing realistic actions from videos "in the wild"[C]//Proceedings of CVPR. New York: IEEE Press, 2009: 1996-2003.[DOI: 10.1109/CVPR. 2009. 5206744]
[37]  Zhu G, Yang M, Yu K, et al. Detecting video events based on action recognition in complex scenes using spatio-temporal descriptor[C]//Proceedings of ACM Multimedia. New York: ACM Press, 2009: 165-174.[DOI: 10.1145/1631272. 1631297]
[38]  Xiang T, Gong S. Beyond tracking: modelling activity and understanding behavior[J]. IJCV, 2006, 67(1): 21-51.[DOI: 10.1007/s11263-006-4329-6]
[39]  Zhang D, Perez D G, Bengio S, et al. Semi-supervised adapted hmms for unusual event detection[C]//Proceedings of CVPR. New York: IEEE Press, 2005: 611-618.[DOI: 10.1109/CVPR.2005.316]
[40]  Chanop S A, Richard H. Optimised KD-trees for fast image descriptor matching[C]//Proceedings of CVPR. New York: IEEE Press, 2008: 1-8.[DOI: 10.1109/CVPR. 2008. 4587638]
[41]  Zhuang Y, Zhuang Y, Li Q, et al. Indexing high-dimensional data in dual distance spaces: a symmetrical encoding approach[C]//Proceedings of the Conference on Extending Database Technology. New York: ACM Press, 2008: 241-251.[DOI: 10.1145/1353343.1353375]
[42]  He Y, Yu J. MFI-Tree: an effective multi-feature index structure for weighted query application[J]. Computer Science and Information System, 2010, 7(1):139-151.[DOI: 10.2298/CSIS1001139H]
[43]  Mayur D, Nicole I, Piotr I, et al. Locality-sensitive hashing scheme based on p-stable distributions[C]//The Annual Symposium on Computational Geometry. New York: ACM Press, 2004: 253-262.[DOI: 10.1145/997817.997857]
[44]  Alexandr A, Piotr I. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions[J]. Communications of the ACM, 2008, 51(1): 117-122.[DOI: 10.1145/1327452.1327494]
[45]  Kuo Y, Chen K, Chiang C, et al. Query expansion for hash-based image object retrieval[C] //Proceedings of ACM Multimedia. New York: ACM Press, 2009: 65-74.[DOI: 10.1145/1631272.1631284]
[46]  Rina P. Entropy based nearest neighbor search in high dimensions[C]//ACM-SIAM Symposium on Discrete Algorithm. New York: ACM Press, 2006: 1186-1195.[DOI: 10.1145/1109557. 1109688]
[47]  Lv Q, Josephson W, Wang Z, et al. Multi-probe LSH: efficient indexing for high-dimensional similarity search[C]//Proceedings of VLDB. New York: ACM Press, 2007: 950-961.[DOI: 978-1-59593-649-3]
[48]  Herve J, Laurent A, Cordelia S, et al. Query-adaptative locality sensitive hashing[C]//Proceedings of ICASSP. New York: IEEE Press, 2008: 825-828.[DOI: 10.1109/ICASSP. 2008. 4517737]
[49]  Loic P, Herve J, Laurent A. Locality sensitive hashing: a comparison of hash function types and querying mechanisms[J]. Pattern Recognition Letters, 2010, 31(11): 1348-1358.[DOI: 10.1016/j.patrec.2010.04.00]
[50]  Antonio T, Rob F, Yair W. Small codes and large image databases for recognition[C]//Proceedings of CVPR. New York: IEEE Press, 2008: 1-8.[DOI: 10.1109/CVPR. 2008. 4587633]
[51]  Yair W, Antonio T, Rob F. Spectral hashing[C] //Proceedings of NIPS. British, Columbia: NIPS Foundation, 2008: 1753-1760.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133