全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

张量分析在视差图生成中的应用

DOI: 10.11834/jig.20131012

Keywords: 视差,光晕,张量,匹配代价

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对当前视差图生成算法中常用的匹配代价对光晕等复杂光学畸变比较敏感的问题,在对相机成像模型进行分析的基础上提出了一种基于张量分析的匹配代价。和目前常用的匹配代价相比,该匹配代价不但对光晕效应具有更强的鲁棒性而且能够更加准确的反映图像的局部结构信息,有效降低了匹配的歧义性。在本文中,张量在积分图像上构造,张量间的距离在黎曼流形上测量;此外,提出了一种简单有效的视差图后续处理方法进一步修正了初始视差图中的不可信视差。最后,在光照变化和光晕效应等非理想情况下将本文方法与其他几种较新的视差图生成方法做了比较,实验结果表明本文方法具有更强的鲁棒性和更高的视差估计精度。

References

[1]  Cornelis N, Leibe B, Gool V. 3d urban scene modeling integrating recognition and reconstruction[J]. International Journal of Computer Vision, 2008,78(2):121-141.
[2]  Micusik B, Kosecka J. Piecewise planar city 3d modeling from street view panoramic sequence[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Fairfax, Arkansas, USA: IEEE, 2009:2906-2909.
[3]  Scharstein D, Sezliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002,47(1):7-42.
[4]  Yoon K, I Kweon. Stereo matching with the distinctive similarity measure[C]//Proceedings of IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil:IEEE Computer Society, 2007:1-7.
[5]  Einecke N, Eggert G. A two stage correlation method for stereoscopic depth estimation[C]//Proceedings of IEEE Computer Society Conference on Digital Image Computing: Techniques and Applications.California,USA:IEEE 2010:227-234.
[6]  Evangelidis G, Psarakis E. Parametric image alignment using enhanced correlation coefficient maximization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30(10):1858-1865.
[7]  Humenberger M, Zinner C, Webber M, et al. A fast stereo matching algorithm suitable for real-time embedded system[J]. Computer Vision and Image Understanding,2010,114(11):1180-1202.
[8]  Humenberger M, Engelke T, Kubinger W.A census based stereo vision algorithm using modified semi-global matching and plane fitting to improve matching quality[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco,USA:IEEE, 2010:77-84.
[9]  Gu Z, Su X, Liu Y, et al. Local stereo matching with adaptive support weight, rank transform and disparity calibration[J]. Pattern Recognition Letters, 2008,29(9):1230-1235.
[10]  Lahdenoja O, Alhoniemi E. A shape-preserving non-parametric symmetry transform[C]//Proceedings of IEEE International Conference on Pattern Recognition.HongKong, China: IEEE, 2006:373-377.
[11]  Sormann M, Konrad K, Klaus A. Segment-based stereo matching using belief propogation and a self-adapting dissimilarity measure[C]//Proceedings of IEEE International Conference and Pattern Recognition.HongKong, China: IEEE, 2006,3:15-18.
[12]  Jin M, Xie S, Yin Y. A stereo pairs disparity matching algorithm by mean-shift segmentation[C]//Proceedings of the 3rd International Workshop on Advanced Computational Intelligence. Sydney, Australia: Springer, 2010:639-642.
[13]  Borisagar V, Zaveri M. A novel segmet-based stereo matching algorithm for disparity map generation[C]//Proceedings of International Conference on Computer and Software Modeling.Vancouver,Canada.Springer, 2011,14(1):227-234.
[14]  Han Z, Ye Q, Liu J. A new segment-based algorithm for stereo matching[C]//Proceedings of IEEE International Conference on mechatronics and automation.Seoul, Korea:IEEE, 2009: 999-1003.
[15]  Mitsunaga T, Nayar S. Radiometric self calibration.[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Collins,Colorado,USA.IEEE, 1999:1374-1380.
[16]  Hou H, Andrews H. Cubic splines for image interpolation and digital filtering[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1978,26(6):508-517.
[17]  Pennec X, Fillard P,Ayache N. A riemannian framework for tensor computing[J]. International Journal of Computer Vision, 2006, 66(1):41-66.
[18]  Yang Q, Wang L, Ahuja N. A constant-space belief propogation algorithm for stereo matching[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco,USA: IEEE,2010:1458-1465.
[19]  Yoon K J, Kweon I S. Locally adaptive support-weight approach for visual correspondence search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28(4):650-656.
[20]  Yang Q, Wang L, Yang H, et al. Stereo matching with color-weighted correlation and hierarchical belief propogation and occlusion handling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,31(3):492-504.
[21]  更多...
[22]  Hosni A, Bleyer M, Gelautz M, et al. Local stereo matching using geodesic support weights[C]//Proceedings of the IEEE International Conference on Image Processing.Cario City,Egypt:IEEE, 2009:2093-2096.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133