全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向局部光照突变的时间和空间中心对称局部二值模式算子

DOI: 10.11834/jig.20131009

Keywords: 局部光照突变,自适应阈值,光照因子,时域信息,TSCS-LBP算子,背景建模

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对现有背景建模方法对局部光照突变非常敏感的问题,提出了一种新的时间和空间中心对称局部二值模式(TSCS-LBP)算子,并基于该算子的直方图设计了一种背景建模方法。TSCS-LBP算子在中心对称局部二值模式(CS-LBP)算子的基础上加入时域信息和中心像素信息,并引入有光照因子的自适应阈值,从而在保持较低计算复杂度的基础上,具有能够快速适应光照突变的能力。在此基础之上设计的背景建模方法,能够在常用实验场景中较为准确地检测出前景,有较高的抗噪性和检测精度;同时在有局部光照突变的特殊场景中也有很好的适应能力,与已有方法相比有较高的优越性。实验结果表明了本文方法的有效性和鲁棒性。

References

[1]  Bouwmans T. Recent advanced statistical background modeling for foreground detection-a systematic survey[J].Recent Patents on Computer Science,2011,4(3):147-176.
[2]  Zivkovi Z.Improved adaptive gaussian mixture model for background subtraction[C]//Proceedings of the 17th International Conference on Pattern Recognition.London, UK:Cambridge, 2004:28-31.
[3]  Heikkila M,Pietikainen M. A texture-based method for modeling the background and detecting moving objects[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(4):657-662.
[4]  Toyama K, Krumm J,Brumitt B, et al. Wallflower: principles and practice of background maintenance[C]//Proceedings of IEEE International Conference on Computer Vision.Kerkyra:IEEE,1999:255-261.
[5]  Heikkila M,Pietikainen M,Schmid C.Description of interest regions with center-symmetric local binary patterns[C]//Proceedings of Computer Vision Graphics and Image Processing.Berlin Heidelberg:Springer-Verlag, 2006: 58-69.
[6]  Li B, Yu J,Jiang D B,et al. ST-CSLBP based space-time mixed background modeling algorithm[J]. Chinese Journal of Scientific Instrument, 2011,12(23):2781-2786.[李勃,郁健, 江登表,等. 基于 ST-CSLBP 的混合时空背景建模算法[J].仪 器 仪 表 学 报, 2011,12(23):2781-2786.]
[7]  Ojala T,Pietikainen M,Maenpaa T. Multresolution grayscale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002, 24(7): 971-987.
[8]  Zhu Y H,Li J S,Guo L S,et al. A local invariant feature description and matching algorithm based on LBP[J].Journal of Computer Aided Design & Computer Graphics, 2011,23(10):1758-1763.[朱英宏, 李俊山, 郭莉莎,等.基于LBP的尺度不变特征的描述和匹配算法[J]. 计算机辅设计与图形学学报,2011,23(10):1758-1763.]
[9]  Li J F, Xu Y.Indoor-outdoor scene classification algorithm based on the texture feature of LBP and wavelet[J]. Journal of Image and Graphics, 2010,15(5):742-748.[李锦锋,许勇. 基于LBP小波纹理特征的室内室外场景分类算法[J].中国图象图形学报,2010,15(5):742-748.]
[10]  Yu W, Xue Y W, Shuo X. LBP texture analysis based on the local adaptive niblack algorithm[C]//Prceeding of IEEE Congress on Image and Signal Processing. Sanya, China:IEEE Publisher,2008:777-780.[DOI: 10.1109/CISP.2008.403]
[11]  Jimenez P G,Moreno H G,Rodriguez J A,et al. Continuous variance estimation in video surveillance sequences with high illumination changes[J].Signal Processing,2009,7(89):1412-1416.
[12]  Li L Y,Huang W M,Gu Y H,et al.Statistical modeling of complex backgrounds for foreground object detection[J].IEEE Transactions on Image Processing, 2004,13(11): 1459-1472.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133