Belhumeur P N, Hespanha J, Kriegman D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720. [DOI:10.1109/34.598228]
[2]
Yan S C, Xu D, Zhang B Y, et al. Graph embedding and extensions: a general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51. [DOI:10.1109/TPAMI. 2007. 12]
[3]
Kim M, Kumar S, Pavlovic V, et al. Face tracking and recognition with visual constraints in real-world videos[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA: IEEE Computer Society, 2008:1-8. [DOI:10.1109/CVPR.2008.4587572]
[4]
Arandjelovic O., Shakhnarovich G, Fisher J. Face recognition with image sets using Manifold Density divergence[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE Computer Society, 2005: 581-588. [DOI: 10.1109/CVPR.2005.151]
[5]
Harandi M T, Sanderson C, Wiliem A, et al. Kernel analysis over Riemannian Manifolds for visual recognition of actions, pedestrians and textures[C]//Proceedings of IEEE Workshop on Applications of Computer Vision. Breckenridge, CO, USA: IEEE Computer Society, 2012, 433-439. [DOI: 10.1109/WACV.2012.6163005]
[6]
Sanin A, Sanderson C, Harandi M, et al. K-tangent spaces on Riemannian manifolds for improved pedestrian detection[C]//Proceedings of IEEE International Conference on Image Processing. Orlando, Florida, USA: IEEE Computer Society, 2012:7-10.
[7]
Fan W, Yeung D Y. Locally linear models on face appearance manifolds with application to dual-subspace based classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York, USA:IEEE Computer Society, 2006:1384-1390. [DOI:10.1109/CVPR.2006.178]
[8]
Yamaguchi O, Fukui K, Maeda K. Face recognition using temporal image sequence[C]//Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition. Nara, Japan: IEEE Computer Society, 1998: 318-323. [DOI: 10.1109/AFGR.1998.670968]
[9]
Fukui K, Yamaguchi O. Face recognition using multiview point patterns for robot vision[C]//International Symposium on Robotics Research.Siena, Italy: Springer Tracts in Advanced Robotics, 2003:192-201.[DOI: 10.1007/11008941_21]
[10]
Kim T K, Kittler J, Cipolla R. Discriminative learning and recognition of image set classes using canonical correlations[J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2007, 29(6): 1005-1018. [DOI:10.1109/TPAMI. 2007. 1037]
[11]
Chu W S, Chen J C, Lien J J. Kernel discriminant transformation for image set-based face recognition[J]. Pattern Recognition, 2011, 44(8): 1567-1580. [DOI:10.1016/j. patcog. 2011.02.011]
[12]
Li X, Fukui K, Zheng N N. Image-set based face recognition using boosted global and local principal angles[C]//Proceedings of Asian Conference on Computer Vision. Queenstown. New Zealand:the Asian Federation of Computer Vision Societies,2010:323-332.[DOI:10.1007/978-3-642-12307-8_3]
[13]
Wang R, Shan S, Chen X, et al. Manifold-manifold distance with application to face recognition based on image set[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA:IEEE Computer Society, 2008:1-8. [DOI:10.1109/CVPR.2008.4587719]
[14]
Shirazi S, Harandi M T, Sanderson C, et al. Clustering on Grassmann manifolds via kernel embedding with application to action analysis[C]//Proceedings of IEEE International Conference on Image Processing. Orlando, Florida, USA: IEEE Signal Processing Society,2012.
[15]
Hamm J, Lee D D. Grassmann discriminant analysis: a unifying view on subspace-based learning[C]//Proceedings of International Conference on Machine Learning. Helsinki, Finland: ACM, 2008:376-383. [DOI: 10.1145/1390156.1390204]
[16]
Chen J, Ye J, Li Q. Integrating global and local structures: a least squares framework for dimensionality reduction[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA:IEEE Computer Society,2007:1-8. [DOI: 10.1109/CVPR.2007.383040]
[17]
Yin X S,Hu E L. Semi-supervised locality dimensionality reduction[J]. Journal of Image and Graphics,2011,16(9):1615-1624. [尹学松,胡恩良.半监督局部维数约减[J].中国图象图形学报,2011,16(9):1615-1624.][DOI:10.11834/jig.20110901]
[18]
Harandi M, Nili M, Ahmadabadi, et al. Optimal local basis: a reinforcement learning approach for face recognition[J]. International Journal of Computer Vision, 2009,81(2):191-204. [DOI: 10.1007/s11263-008-0161-5]
[19]
Harandi M T, Sanderson C, Shirazi S, et al.Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO, USA:IEEE Computer Society, 2011:2705-2712.[DOI: 10.1109/CVPR.2011.5995564]
[20]
Edelman A, Arias T A, Smith S T. The geometry of algorithms with orthogonality constraints[J]. SIAM Journal on Matrix Analysis and Applications, 1998, 20(2): 303-353. [DOI: 10.1137/S0895479895290954]
[21]
更多...
[22]
Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720. [DOI: 10.1109/34. 598228]
[23]
Mika S, Ratsch G, Weston J, et al. Mullers, fisher discriminant analysis with kernels[C]//Proceedings of IEEE Signal Proce-ssing Society Workshop on Neural Networks for Signal Processing IX. Wisconsin, USA: IEEE Signal Processing Society, 1999. [DOI: 10.1109/NNSP.1999.788121.]