全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

自适应滤波窗实现距离加权图像椒盐噪声滤除

DOI: 10.11834/jig.20150803

Keywords: 距离加权,密度估计,椒盐噪声,图像还原

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的在比较几种椒盐去噪方法的滤波窗口尺寸选择策略的基础上,提出一种基于自适应滤波窗的距离加权图像椒盐噪声滤除方法。方法首先将图像中灰度值为0或255的像素点判定为噪声点,接着对每个噪声点,在以该噪声点为中心、不断增大面积的滤波窗口序列中,寻找包含非噪声点的最小尺寸窗口。若此窗口尺寸小于预设的阈值,则使用该窗口中的非噪声点进行距离加权滤波。否则认为该噪声点位置位于图像自身灰度值为0或255的像素点区域内部,使用少数服从多数策略计算灰度恢复值。结果将本文方法与其他7种椒盐去噪方法相比较。当图像自身包含较多灰度值为0或255的像素点时,本文方法去噪效果优于其他7种方法。当图像自身不含或较少包含灰度值为0或255的像素点时,本文方法与其他方法中的最优去噪结果效果相当。结论本文方法不仅能够有效滤除椒盐噪声,而且适用于自身包含灰度值为0或255的像素点多的椒盐噪声图像。

References

[1]  Lv Z W, Tang Z D, Zhou L, et al.One efficient and fast method for the removal of high-density salt and pepper noise[J]. Chinese Journal of Electronics,2011,39(8): 1903-1906. [吕宗伟, 唐治德, 周林, 等. 一种高效快速的高密度椒盐噪声消除算法 [J]. 电子学报, 2011, 39(8): 1903-1906.]
[2]  Nasri M, Saryazdi S, Nezamabadi-pour H. A fast adaptive salt and pepper noise reduction method in images[J]. Circuits, Systems, and Signal Processing, 2013, 32(4): 1839-1857.
[3]  Ramadan Z M. Efficient restoration method for images corrupted with impulse noise[J]. Circuits, Systems, and Signal Processing, 2012, 31(4): 1397-1406.
[4]  Zhang X, Xiong Y. Impulse noise removal using directional difference based noise detector and adaptive weighted mean filter[J]. Signal Processing Letters, IEEE, 2009, 16(4): 295-298.
[5]  Srinivasan K S, Ebenezer D. A new fast and efficient decision-based algorithm for removal of high-density impulse noises[J]. Signal Processing Letters, IEEE, 2007, 14(3): 189-192.
[6]  Li Z Y, Tang K Z, Hu J M ,et al.Image salt & pepper noise removing based on directional weighted mean filter[J]. Journal of Image and Graphics,2013,18(11):1407-1415.[李佐勇, 汤可宗, 胡锦美,等. 椒盐图像的方向加权均值滤波算法[J]. 中国图象图形学报, 2013, 18(11): 1407-1415.][DOI:10.11834/jig.20131103]
[7]  Wang F, Man Y Y. Salt & pepper noise removing method based on fuzzy median filter [J]. Fuzzy Systems and Mathematics, 2012, 26(1): 166-174. [王芳, 满益云. 基于模糊中值滤波的椒盐噪声去除方法[J]. 模糊系统与数学, 2012, 26(1): 166-174.]
[8]  Aiswarya K, Jayaraj V, Ebenezer D. A new and efficient algorithm for the removal of high density salt and pepper noise in images and videos[C] //Proceedings of Second International Conference on Computer Modeling and Simulation.Sanya,China:IEEE Press,2010, 4: 409-413.
[9]  Esakkirajan S, Veerakumar T, Subramanyam A N, et al. Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter[J]. Signal Processing Letters, IEEE, 2011, 18(5): 287-290.
[10]  Bhadouria V S, Ghoshal D, Siddiqi A H. A new approach for high density saturated impulse noise removal using decision-based coupled window median filter[J]. Signal, Image and Video Processing, 2014, 8(1): 71-84.
[11]  Martin D, Fowlkes C, Tal D, et al.The berkeley segmentation dataset and benchmark[ DB/OL].2007-06-01[2014-12-09]. http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
[12]  Ahmed F, Das S. Removal of high density salt-and-pepper noise in images with an iterative adaptive fuzzy filter using alpha-trimmed mean[J].Fuzzy Systems,IEEE, 2013,22(5): 1352-1358.
[13]  Lin Y M,Li Z Y,Lin Y Y. Estimation of salt and pepper noise in images based on partitioning strategy[J]. Journal of Image and Graphics, 2014, 19(9):1288-1296. [林亚明, 李佐勇, 林叶郁. 分块策略实现图像椒盐噪声密度估计[J]. 中国图象图形学报, 2014, 19(9):1288-1296.][DOI: 10.11834/jig. 20140905]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133