全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

条件随机场模型的场景描述

DOI: 10.11834/jig.20130304

Keywords: 场景描述,特征提取,K-means,条件随机场

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种基于条件随机场模型的场景描述方法,条件随机场模型直接对描述目标的后验概率建模,不但能融合多类特征,还具有联系上下文信息的能力,这使得CRF模型在场景描述中能获得更准确的描述结果。将图像分成m×n大小的矩形块,通过多类特征提取,分别提取图像中每一矩形块的颜色特征、纹理特征、位置特征,通过K-means算法对特征进行聚类,并按照矩形块的位置组成特征向量,用CRF模型对特征向量建模,通过训练获取模型的参数估计,最终利用MPM算法进行模型推断,获取场景描述。实验结果表明本文方法能较准确地进行场景描述。

References

[1]  Elfiky N M, Khan F S, Van de Weijer J, et al. Discriminative compact pyramids for object and scene recognition[J]. Pattern Recognition, 2012, 45(4): 1627-1636.
[2]  Bianco S, Ciocca G, Cusano C, et al. Improving color constancy using indoor-outdoor image classification[J]. IEEE Transactions on Image Processing, 2008, 17(12): 2381-2392.
[3]  Kim W, Park J,Kim C. A novel method for efficient indoor-outdoor image classification[J]. Journal of Signal Processing Systems for Signal Image and Video Technology, 2010, 61(3): 251-258.
[4]  Reddy I S, Shevade S,Murty M N. A fast quasi-Newton method for semi-supervised SVM[J]. Pattern Recognition, 2011, 44(10-11): 2305-2313.
[5]  Bhatt M R, Desai U B. Robust image-restoration algorithm using markov random-field model[J]. Cvgip-Graphical Models and Image Processing, 1994, 56(1): 61-74.
[6]  Zhong P,Wang R S. Learning conditional random fields for cla-ssification of hyperspectral images[J]. IEEE Transactions on Image Processing, 2010, 19(7): 1890-1907.
[7]  Shin D K, Kim H S, Chung T Y, et al. Image retrieval using VQ-based local Gabor feature[J]. Electronics Letters, 2002, 38(11): 505-507.
[8]  Zhong P, Liu F,Wang R S. Learning sparse conditional random fields to select features for land development classification[J]. International Journal of Remote Sensing, 2011, 32(15): 4203-4219.
[9]  Vinh L T, Lee S, Le H X, et al. Semi-Markov conditional random fields for accelerometer-based activity recognition[J]. Applied Intelligence, 2011, 35(2): 226-241.
[10]  Yang B, Huang C,Nevatia R. Segmentation of objects in a detection window by Nonparametric Inhomogeneous CRFs[J]. Computer Vision and Image Understanding, 2011, 115(11): 1473-1482.
[11]  Bouman C A,Shapiro M. A multiscale random-field model for bayesian image segmentation[J]. IEEE Transactions on Image Processing, 1994, 3(2): 162-177.
[12]  Caliebe A. Properties of the maximum a posteriori path estimator in hidden Markov models[J]. IEEE Transactions on Information Theory, 2006, 52(1): 41-51.
[13]  Monaco J P, Madabhushi A. Weighted maximum posterior marginals for random fields using an ensemble of conditional densities from multiple markov chain monte carlo simulations[J]. IEEE Transactions on Medical Imaging, 2011, 30(7): 1353-1364.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133