全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

虚拟手术流血模拟的GPU加速实现

DOI: 10.11834/jig.20141016

Keywords: 虚拟手术,流血模拟,光滑粒子动力学(SPH),CUDA加速,温度项

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的流血效果是虚拟手术模拟器视觉效果的重要组成部分,血流与固体交互的庞大计算量使取得实时的流血模拟效果具有很大的挑战性。提出一种基于图形处理单元(GPU)加速的虚拟手术流血效果模拟方法。方法该方法以Müller等人提出的光滑粒子动力学(SPH)作为基础,采用温度项使粒子具有不同速度模拟血流形成的血槽,同时基于构建均匀空间网格的思想,利用通用并行计算架构(CUDA)多线程并行加速技术完成粒子控制方程的求解和血流与固体交互的计算,从而取得实时的效果。结果实验结果表明,本文方法能够满足虚拟手术中切割表面流血和血液在器官中流动的模拟需求,在粒子个数为9000时仅需20ms,对比于纯CPU的实现取得20.15倍的加速比,实现了大量粒子下的实时流血模拟。结论本文方法具有较好的灵活性和实时性的特点,可以应用于虚拟手术仿真系统之中。

References

[1]  Stam J. Stable fluids[C]//Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: Addison-Wesley Publishing Co., 1999: 121-128.[DOI:10.1145/311535.311548]
[2]  Zátonyi J, Paget R, Székely G, et al. Real-time synthesis of bleeding for virtual hysteroscopy[J]. Medical Image Analysis, 2005, 9(3): 255-266.[DOI:10.1016/j.media.2004.11.008]
[3]  Rianto S, Li L. Fluid dynamic visualisations of cuttings-bleeding for virtual reality heart beating surgery simulation[C]//Proceedings of the 33rd Australasian Conference on Computer Science. Darlinghurst, Australia: Australian Computer Society, 2010, 102: 53-60.
[4]  Müller M, Charypar D, Gross M. Particle-based fluid simulation for interactive applications[C]//Proceedings of the 2003 ACM SIGGRAPH, Switzerland Switzerland: Eurographics Association Aire-la-Ville, 2003: 154-159.
[5]  Qin J, Pang W M, Chui Y P, et al. Hardware-accelerated bleeding simulation for virtual surgery[C]//Proceedings of Computational Biomechanics for Medicine II Workshop. Brisbane. Australia: MICCAT, 2007, 133-140.
[6]  Ueda K, Fujishiro I. Visual simulation of bleeding on skin surface[C]//Proceedings of ACM SIGGRAPH New York, USA: ACM, 2011: 9.[DOI:10.1145/2037715.2037725]
[7]  Kass M, Miller G. Rapid, stable fluid dynamics for computer graphics[J]. ACM SIGGRAPH Computer Graphics, 1990, 24(4): 49-57.[DOI:10.1145/97880.97884]
[8]  Borgeat L, Massicotte P, Poirier G, et al. Layered surface fluid simulation for surgical training[M]//Medical Image Computing and Computer-Assisted Intervention. Berlin Heidelberg: Springer, 2011: 323-330.[DOI:10.1007/978-3-642-23623-5_41]
[9]  Oppenheimer P, Gupta A, Weghorst S, et al. The representation of blood flow in endourologic surgical simulations[J]. Medicine Meets Virtual Reality 2001: Outer Space, Inner Space, Virtual Space, 2001, 81: 365-371.[DOI:10.3233/978-1-60750-925-7-365]
[10]  Xu K, Xiong Y S, Tan K, et al. A model of bended bloodstream with small amount bleeding[J]. Journal of National University of Defense Technology, 2004, 26(5): 70-73. [徐凯, 熊岳山, 谭柯, 等. 一种小量流血形成的弯曲血槽模型[J]. 国防科技大学学报, 2004, 26(5): 70-73.][DOI: 10.3969/j.issn.1001-2486.2004.05.015]
[11]  Ren J, Xiong Y S, Tan K, et al. Simulation of blood flow in virtual system of cardiac intervention[J]. Journal of National University of Defense Technology,2006,28(2): 24-26.[任巨, 熊岳山, 谭珂, 等. 虚拟心脏介入手术系统的血流模拟[J]. 国防科技大学学报, 2006, 28(2): 24-26.][DOI: 10.3969/j.issn.1001-2486.2006.02.014]
[12]  Amada T, Imura M, Yasumuro Y, et al. Particle-based fluid simulation on gpu[C]//Proceedings of ACM Workshop on General-Purpose Computing on Graphics Processors and SIGGRAPH. New York, USA: ACM. 2004.
[13]  Harada T, Koshizuka S, Kawaguchi Y. Smoothed particle hydrodynamics on GPUs[C]//Proceedings of Computer Graphics International. Petropolis: SBC, 2007: 63-70.
[14]  Goswami P, Schlegel P, Solenthaler B, et al. Interactive SPH simulation and rendering on the GPU[C]//Proceedings of the 2010 ACM SIGGRAPH. Switzerland, Switzerland: Eurographics Association Aire-la-Ville, 2010: 55-64. [DOI:10.2312/SCA/SCA10/055-064]
[15]  Clavet S, Beaudoin P, Poulin P. Particle-based viscoelastic fluid simulation[C]//Proceedings of the 2005 ACM SIGGRAPH. New York, USA: ACM, 2005: 219-228. [DOI:10.1145/1073368.1073400]
[16]  Pozrikidis C. Numerical Computation in Science and Engineering[M]. New York: Oxford University Press, 1998.
[17]  Lorensen W E, Cline H E. Marching cubes: a high resolution 3D surface construction algorithm[C]//Proceedings of ACM Siggraph Computer Graphics. New York, USA: ACM, 1987, 21(4): 163-169.[DOI:10.1145/37402.37422]
[18]  Wen C J, Ou J W, Jia J Y, et al. GPGPU-based smoothed particle hydrodynamic fluid simulation[J]. Journal of Computer-Aided Design & Computer Graphics, 2010, 22(3): 406-411.[温婵娟,欧嘉蔚,贾金原,等.GPU通用计算平台上的SPH流体模拟[J].计算机辅助设计与图形学学报,2010,22(3):406-411.]
[19]  Qin J, Pang W M, Nguyen B P, et al. Particle-based simulation of blood flow and vessel wall interactions in virtual surgery[C]//Symposium on Information and Communication Technology. New York, USA: ACM, 2010: 128-133.[DOI:10.1145/1852611.1852636]
[20]  Basdogan C, Ho C H, Srinivasan M A. Simulation of tissue cutting and bleeding for laparoscopic surgery using auxiliary surfaces[J]. Studies in Health Technology and Informatics, 1999: 38-44. [DOI:10.3233/978-1-60750-906-6-38]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133