全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结合稀疏识别的自适应Wallis滤波在高分辨率影像控制点匹配中的应用

DOI: 10.11834/jig.20140415

Keywords: 稀疏识别,辐射参数,自适应Wallis增强,提取控制点

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的随着国内遥感卫星的迅速发展,卫星图像的图幅越来越大,分辨率越来越高。在轨遥感图像的几何精度评价,要求从待评遥感图像和多源参考图像之间精确地提取出分布均匀的控制点信息。使用Wallis滤波对高分辨率影像进行增强时,会产生过增强和饱和现象,影响了控制点提取效果。为了克服上述缺陷,提出了一种基于稀疏识别的自适应Wallis图像增强算法。方法首先计算图像子区域的辐射质量参数并构建分类特征;然后通过稀疏识别算法确定子区域的地物类型;最后根据子区域所属地物类型,选择不同的Wallis滤波参数,实现整幅图像的自适应增强,并在增强的遥感图像上提取控制点信息,实现遥感图像的几何精度自动化评价。结果针对资源三号卫星影像的实验结果表明,针对不同的子区域地物类型进行自适应Wallis增强,有效防止了基于全局统一参数的Wallis滤波带来的过增强和饱和现象,有效增强了高分辨率图像的纹理。结论提出了一种新的高分辨率遥感影像增强策略,增强了高分辨率图像的纹理,提高了控制点的获取数目和准确率。

References

[1]  The Research and Application of Environment and Disaster Monitoring Satellite[G]. Beijing:China Centre for Resources Satellite Data and Application, 2008.[中国资源卫星应用中心.环境与灾难监测预报小卫星星座A、B(HJ-1-A、B)应用研究文集[G].北京:中国资源卫星应用中心, 2008.]
[2]  Chen J, Wang W, Li Z Y. LANDSAT-5 TM data radiometric correction and geospatial positioning accuracy[J]. Journal of Image and Graphics, 2008, 13(6): 1094-1100.[陈俊, 王文, 李子杨. Landsat-5 TM数据的辐射校正与几何定位精度[J].中国图象图形学报, 2008, 13(6):1094-1100.]
[3]  On-orbit Performance Assessment of Environment and Disaster Monitoring Satellite[G]. Beijing:China Centre for Resources Satellite Data and Application, 2008.[中国资源卫星应用中心环境与灾难监测预报小卫星星座A、B(HJ-1-A、B)在轨测试报告[G].北京:中国资源卫星应用中心, 2008.]
[4]  He H Q, Huang S X. Improved algorithm for Harris rapid sub-pixel corners detection[J]. Journal of Image and Graphics, 2012, 17(7):853-857.[何海清, 黄声享.改进的Harris亚像素角点快速定位[J].中国图象图形学报, 2012, 17(7):853-857.]
[5]  Chen M, Xiang N P, Luo W. A multi-scale feature point detector[J]. Journal of Geomatics Science and Technology, 2010, 27(5):357-360.[陈敏, 向南平, 罗畏.一种多尺度特征点探测算子[J].测绘科学技术学报, 2010, 27(5):357-360.]
[6]  Wang S H, You H J, Fu K. An automatic method for finding matches in SAR images based on coarser scale bilateral filtering SIFT[J]. Journal of Electronics & Information Technology, 2012, 34(2):287-293.[王山虎, 尤红建, 付琨.基于大尺度双边SIFT的SAR图像同名点自动提取方法[J]. 电子与信息学报, 2012, 34(2):287-293.]
[7]  Bay H, Tuytelaars T, Gool LV. Surf: speeded up robust features[C]//Proceedings of European Conference on Computer Vision, Graz, Austria: springer, 2006, 3951: 404-417.
[8]  Lan L, Li G H, Tian H, et al. Windowed intensity difference histogram descriptor and its application to improving SURF algorithm[J]. Journal of Electronics & Information Technology, 2011, 33(5):1042-1048.[廉蔺, 李国辉, 田昊, 等.加窗灰度差直方图描述子及其对SURF算法的改进[J].电子与信息学报, 2011, 33(5):1042-1048.]
[9]  Geng L L, Lin J, Long X X, et al. Research on feature matching algorithm for ZY-3 image[J]. Spacecraft Recovery & Remote Sensing, 2012, 33(3):93-99.[耿蕾蕾, 林军, 龙小祥, 等."资源三号"影像特征匹配方法研究[J].航天返回与遥感, 2012, 33(3):93-99.]
[10]  Liu X C, Yu Q F, Lei Z H. Researches into gray value transform to improve scene matching robustness[J]. Journal of National University of Defense Technology, 2010, 32(3):48-52.[刘晓春, 于起峰, 雷志辉.增强景象匹配鲁棒性的灰度变换技术研究[J].国防科技大学学报, 2010, 32(3):48-52.]
[11]  Zhang L, Zhang Z X, Zhang J Q. The image matching based on wallis filtering[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1999, 1(24):24-35.[张力, 张祖勋, 张剑清.Wallis滤波在影像匹配中的应用[J].武汉测绘科技大学学报, 1999, 1(24):24-35.]
[12]  Li D R. China\'s first civilian three-line-array stereo mapping satellite[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(3):317-322.[李德仁.我国第一个民用三线阵立体测绘卫星-资源三号测绘卫星[J].测绘学报, 2012, 41(3):317-322.]
[13]  Lin T, Gao G M, Liu R X, et al. Comparison between ETM+ and ASTER data for extraction of alteration information[J]. Remote Sensing Information, 2011, 1:65-69.[林腾, 高光明, 刘容秀, 等.ETM+和ASTER数据在遥感信息提取中的对比研究[J].遥感应用, 2011, 1:65-69.]
[14]  Su L H, Yi T S, Wan J W. Compression of hyperspectral image based on independent component analysis[J]. Acta Photonica Sinica, 2008, 37(5):973-976.[苏令华, 衣同胜, 万建伟.基于独立分量分析的高光谱图像压缩[J].光子学报, 2008, 37(5):973-976.]
[15]  Tong X H, Zhang X, Liu M L. Urban land use change detection based on high accuracy classification of multispectral remote sensing imagery[J]. Spectroscopy and Spectral Analysis, 2009, 29(8):2131-2135.[童小华, 张学, 刘妙龙.基于多光谱遥感影像分类的城镇用地变化研究[J].光谱学与光谱分析, 2009, 29(8):2131-2135.]
[16]  Hua Y, Zhang T, Xi H W, et al. Research on method of hyperspectral remote sensing image classification based on decision tree[J]. Computer Technology and Development, 2012, 22(6):198-202.[华晔, 张涛, 奚后玮, 等.基于决策树的高光谱遥感影像分类方法研究[J].计算机技术与发展, 2012, 22(6):198-202.]
[17]  Li X C. A remote-sense image classification technology based on SVM[J]. Communications Technology, 2009, 42(8):115-117.[李雪婵.一种基于SVM 的遥感影像分类技术[J].通信技术, 2009, 42(8):115-117.]
[18]  Wang G F. Research on methods of computer classification to remote sensing image[J]. Journal of Shanxi Agricultural Sciences, 2009, 37(10):39-41.[王国芳.遥感图像计算机分类方法的研究[J].山西农业科学, 2009, 37(10):39-41.]
[19]  Wang X, Zhang M M, Yu X, et al. Point cloud registration based on improved iterative closest point method[J]. Optics and Precision Engineering, 2012, 20(9):2068-2077.[王欣, 张明明, 于晓, 等.应用改进迭代最近点方法的点云数据配准[J].光学精密工程, 2012, 20(9):2068-2077.]
[20]  Chen C F, Cheng L, Yue T X. DEM accuracy assessment based on M-estimation[J]. Science & Technology Review, 2011, 29(7):50-54.[陈传法, 程垒, 岳天祥.基于M估计的DEM精度评价[J].科技导报, 2011, 29(7):50-54.]
[21]  Yang A Y, Wright J, Ma Y, et al. Feature selection in face recognition: a sparse representation perspective[J]. Manuscript Submitted to IEEE Trans. PAMI, 2007, 8: 1-17.
[22]  Kroeker K. Face recognition: breakthrough[J]. Communications of the ACM, 2009, 52(8):18-19.
[23]  更多...
[24]  Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
[25]  Yin F, Jiao L C. Robust remote sensing image target recognition based on extending training set by rotation and sparse representation[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(1):89-95.[殷飞, 焦李成.基于旋转扩展和稀疏表示的鲁棒遥感图像目标识别[J].模式识别与人工智能, 2012, 25(1):89-95.]
[26]  Menard C, Leonardis A. Stereo matching using M-estimators[C]//Proceedings of the 7th International Conference on Computer Analysis of Images and Patterns. Kiel, Germany: Springer. 1997: 305-312.
[27]  Fischler M, Bolles R. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[C]//Communication of the ACM. New York, USA: ACM, 1981, 24(6): 381-395.
[28]  Dong M L, Wang Z H, Zhu L Q, et al. Stereo vision image matching based on RANSAC algorithm[J]. Journal of Beijing University of Technology, 2009, 35(4): 452-457.[董明利, 王振华, 祝连庆, 等.基于RANSAC算法的立体视觉图像匹配方法[J].北京工业大学学报, 2009, 35(4):452-457.]
[29]  Liu X B, Zou B J. A RANSAC-based cylindrical image registration algorithm[J]. Journal of Hunan University, 2010, 37(8):79-82.[刘相滨, 邹北骥.一种基于RANSAC的柱面图像配准算法[J].湖南大学学报:自然科学版, 2010, 37(8):79-82.]
[30]  Chen F X, Wang R S. Fast RANSAC with preview model parameters evaluation[J]. Journal of Software, 2005, 16(8):1431-1437.[陈付幸, 王润生.基于预检验的快速随机抽样一致性算法[J].软件学报, 2005, 16(8):1431-1437.]
[31]  Zhang X T, Si B, Wang H. A method to improve SIFT\'s correct rate based on constraints of epipolar geometry[J]. Aero Weaponry, 2012, 1(3):37-40.[张喜涛, 司斌, 王晖.利用对极几何约束的方法提SIFT算法的正确率[J].航空兵器, 2012, 1(3):37-40.]
[32]  Yang M, Shen C L. Study on scene matching based on epipolar geometric constraint[J]. Journal of Nanjing University of Aeronautics & Asronautics, 2004, 36(2):235-239.[杨敏, 沈春林.基于对极几何约束的景象匹配研究[J].南京航空航天大学学报, 2004, 36(2):235-239.]
[33]  Donoho D L. For most large underdetermined systems of linear equations the minimal l1-Norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829.
[34]  Baraniuk R. A lecture on compressed sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-124.
[35]  Candés E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Inf. Theory, 2006, 52: 489-509.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133