全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2014 

四种冷季型草坪植物对镉的耐受性与积累特性

DOI: 10.11686/cyxb20140622, PP. 176-188

Keywords: 冷季型草坪植物,,耐受性,积累性,植物修复

Full-Text   Cite this paper   Add to My Lib

Abstract:

高羊茅、草地早熟禾、多年生黑麦草和匍匐剪股颖在镉(Cd)污染土壤上有很高的耐受力,但它们对Cd的耐受性和积累能力鲜有报道。4种冷季型草坪植物在不同Cd浓度(50,100,200,400mgCd/kg)下处理60d,本文对4种草坪植物在Cd胁迫下的生理响应及地上部和根系的Cd含量进行了研究。从Cd胁迫对草坪植物的草坪质量、相对生长速率、草坪密度、地上部和根系的生物量、叶片电导率、叶片相对含水量和叶片光化学效率的影响可以看出,高羊茅对Cd的耐受性最好,其次为多年生黑麦草,再次是草地早熟禾,匍匐剪股颖对Cd的耐受性最差。本研究还发现草坪植物在Cd胁迫下,叶片相对生长速率和根系生物量比其他的生理指标敏感。4种草坪植物地上部和根系的Cd浓度和积累量随着处理浓度的增加而增加。在相同Cd浓度处理下,草地早熟禾地上部Cd浓度最高,高羊茅和匍匐剪股颖次之,多年生黑麦草地上部的Cd浓度最低。4种草坪植物中根系Cd浓度最高的是多年生黑麦草。在50~400mgCd/kg处理下,草地早熟禾的转运系数和萃取率最大,多年生黑麦草的转运系数和萃取率最小。在相同Cd处理水平下,草地早熟禾地上部的Cd积累量比其他3种草坪植物高,匍匐翦股颖根系生物量低导致其根系的Cd积累量最低。本研究结果表明,4种草坪植物对Cd有较强的耐受性和积累能力,它们具有应用于Cd污染土壤上植物固定的潜力。

References

[1]  Reference:
[2]  Dong W Q Y,Cui Y,Liu X.Instances of soil and crop heavy metal contamination in China[J]. Soil and Sediment Contamination, 2001, 10(5): 497-510.
[3]  Komarnicki G J K.Lead and cadmium in indoor air and the urban environment[J]. Environmental Pollution, 2005, 136(1): 47-61.
[4]  Arao T, Ishikawa S, Murakami M,et al.Heavy metal contamination of agricultural soil and countermeasures in Japan[J]. Paddy and Water Environment, 2010, 8(3): 247-257.
[5]  Buendía González L,Orozco Villafuerte J,Cruz Sosa F,et al.Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant[J]. Bioresource Technology, 2010, 101(15): 5862-5867.
[6]  Jabeen R, Ahmad A, Iqbal M.Phytoremediation of heavy metals: Physiological and molecular mechanisms[J]. The Botanical Review, 2009, 75(4): 339-364.
[7]  Wei S H,Zhou Q X,Wang X,et al.A newly discovered Cd hyperaccumulator Solanum nigrum L.[J]. Chinese Science Bulletin, 2005, 50(1): 33-38.
[8]  Sun Y B,Zhou Q X,Wang L,et al.Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator[J]. Journal of Hazardous Materials, 2009, 161(2-3): 808-814.
[9]  Lie F H.Cd hyper-accumulator Phytolacca acinosa Roxb and Cd-accumulative characteristics[J].Ecology and Environment Sciences, 2006, 15(2): 303-306.
[10]  Liu W,Shu W S,Lan C Y.Viola baoshanensis,a plant that hyperaccumulates cadmium[J].Chinese Science Bulletin, 2004, 49(1): 29-32.
[11]  Long X X,Wang Y H,Liu H Y.Growth response and uptake differences between two ecotypes of Sedum alfrredii to soils Cd[J].Journal of Plant Ecology, 2008, 32(1): 168-175.
[12]  Brown S L,Chaney R L,Angle J S,et al.Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil[J]. Journal of Environmental Quality, 1994, 23(6): 1151-1157.
[13]  Sridhar B B M,Diehl S V, Han F X,et al.Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea)[J]. Environmental and Experimental Botany, 2005, 54(2): 131-141.
[14]  Singh O V,Labana S,Pandey G,et al. Phytoremediation: an overview of metallic ion decontamination from soil[J]. Applied Microbiology and Biotechnology, 2003, 61: 405-412.
[15]  Liu S L,Shi X L,Pan Y Z,et al .Effects of cadmium stress on growth, accumulation and distribution of biomass and nutrient in Catharanthus roseus[J]. Acta Prataculturae Sinica, 2013, 22(3): 154-161.
[16]  Ding J J,Pan Y Z,Liu S L,et al.Effect and mechanisms of soil cadmium stress on Dianthus chinensis seedling growth[J]. Acta Prataculturae Sinica, 2013, 22(6): 77-85.
[17]  Krupa Z, Baszynski T.Some aspects of heavy metals toxicity towards photosynthetic apparatus:direct and indirect effects on light and dark reactions[J]. Acta Physiologiae Plantarum, 1995, 7: 55-64.
[18]  Zhang X A,Li M Y,Wang Z H,et al. Effects of heavy metals and saline-alkali on seedlings growth,physiological-biochemical of Oryehophragmus violaeeus[J]. Acta Prataculturae Sinica, 2013, 22(2): 187-194.
[19]  Ayeni O O, Ndakidemi P A, Snyman R G,et al.Chemical, biological and physiological indicators of metal pollution in wetlands[J]. Scientific Research and Essays, 2010, 5(15): 1938-1949.
[20]  Breckle S W, Kahle H.Effects of toxic heavy metals (Cd, Pb) on growth and mineral nutrition of beech (Fagus sylvatica L.)[J]. Vegetatio, 1992, 101: 43-53.
[21]  Liu Y M,Wang K,Xu P X,et al. Physiological responses and tolerance threshold to cadmium contamination in Eremochloa ophiuroides[J]. International Journal of Phytoremediation, 2012, 14(5): 467-480.
[22]  Wang M J, Wang W X. Cadmium in three marine phytoplankton:Accumulation, subcellular fate and thiol induction[J]. Aquatic Toxicology, 2009, 95(2): 99-107.
[23]  Sun R L, Jin C X, Zhou Q X. Characteristics of cadmium accumulation and tolerance in Rorippa globosa (Turcz.) Thell., a species with some characteristics of cadmium hyperaccumulation[J]. Plant Growth Regulation, 2010, 61(1): 67-74.
[24]  Wei S H, Zhou Q X, Mathews S. A newly found cadmium accumulator-Taraxacum mongolicum[J]. Journal of Hazardous Materials, 2008, 159: 544-547.
[25]  Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989, 1(2): 81-126.
[26]  Baker A J M, Reeves R D, Hajar A S M. Heavy metal accumulation and tolerance in British population of the metallophyte Thlaspi caerulescens J.& C. Presl (Brassicaceae)[J]. New Phytologist, 1994, 127: 61-68.
[27]  Chaney R L, Malik M, Li Y M,et al. Phytoremediation of soil metals[J]. Current Opinion in Biotechnology, 1997, 8(3): 279-284.
[28]  Ma L Q, Komar K M, Tu C,et al. A fern that hyperaccumulates arsenic[J]. Nature, 2001, 409: 579.
[29]  Wei S H, Zhou Q X, Koval P V. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation[J]. Science of The Total Environment, 2006, 369(1-3): 441-446.
[30]  Blaylock M J, David E, Dushenkov S,et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents[J]. Environmental Science and Technology, 1997, 31(3): 860-865.
[31]  Zhuang P, Yang Q W, Wang H B,et al. Phytoextraction of heavy metals by eight plant species in the field[J]. Water, Air, and Soil Pollution, 2007, 184(1-4): 235-242.
[32]  Hernández-Allica J, Becerril J M, Garbisu C. Assessment of the phytoextraction potential of high biomass crop plants[J]. Environmental Pollution, 2008, 152(1): 32-40.
[33]  Rebele F, Lehmann C. Phytoextraction of cadmium and phytostabilisation with mugwort (Artemisia vulgaris)[J]. Water, Air, and Soil Pollution, 2011, 216(1-4): 93-103.
[34]  Dary M, Chamber Pérez M A,Palomares A J,et al.“In situ”phytostabilization of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria[J]. Journal of Hazardous Materials, 2010, 177(1-3): 323-330.
[35]  Alvarenga P,Gon alves A P,Fernandes R M,et al.Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass[J]. Science of The Total Environment, 2008, 406: 43-56.
[36]  Zhang X F,Xia H P,Li Z A,et al.Potential of four forage grasses in remediation of Cd and Zn contaminated soils[J]. Bioresource Technology, 2010, 101(6): 2063-2066.
[37]  Chen Y,Shen Z,Li X.The use of vetiver grass (Vetiveria zizanioides)in the phytoremediation of soils contaminated with heavy metals[J]. Applied Geochemistry, 2004, 19(10): 1553-1565.
[38]  Xu P X,Wang Z L.Physiological mechanism of hypertolerance of cadmium in Kentucky bluegrass and tall fescue:Chemical forms and tissue distribution[J]. Environmental and Experimental Botany, 2013, 96: 35-42.
[39]  Steinke K,Stier J C.Nitrogen selection and growth regulator applications for improving shaded turf performance[J]. Crop Science, 2003, 43: 1399-1406.
[40]  DaCosta M,Wang Z L,Huang B R. Physiological adaptation of Kentucky bluegrass to localized soil drying[J]. Crop Science, 2004, 44: 307-314.
[41]  Yang X E, Long X X, Ye H B,et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance)[J]. Plant and Soil, 2004, 259: 181-189.
[42]  Liu X Q, Peng K J, Wang A G,et al. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration[J]. Chemosphere, 2010, 78(9): 1136-1141.
[43]  Zhang S R,Chen M Y,Li T,et al.A newly found cadmium accumulator Malva sinensis Cavan[J].Journal of Hazardous Materials, 2010, 173(1-3): 705-709.
[44]  Zhuang P,Ye Z H,Lan C Y,et al.Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species[J]. Plant and Soil, 2005, 276(1-2): 153-162.
[45]  Zhao F J, Lombi E, McGrath S P. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens[J]. Plant and Soil, 2003, 249: 37-43.
[46]  Pietrini F, Zacchini M, Iori V,et al.Spatial distribution of cadmium in leaves and its impact on photosynthesis:examples of different strategies in willow and poplar clones[J]. Plant Biology, 2009, 12(2): 355-363.
[47]  Ci D W,Jiang D,Wollenweber B,et al.Cadmium stress in wheat seedlings:growth, cadmium accumulation and photosynthesis[J]. Acta Physiologiae Plantarum, 2009, 32(2): 365-373.
[48]  Shi G R, Cai Q S.Cadmium tolerance and accumulation in eight potential energy crops[J]. Biotechnology Advances, 2009, 27(5): 555-561.
[49]  Sun Y B,Zhou Q X,Diao C Y.Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.[J]. Bioresource Technology, 2008, 99(5): 1103-1110.
[50]  Wang M J,Wang W X.Cadmium in three marine phytoplankton:Accumulation, subcellular fate and thiol induction[J]. Aquatic Toxicology, 2009, 95(2): 99-107.
[51]  Sun R L,Jin C X,Zhou Q X.Characteristics of cadmium accumulation and tolerance in Rorippa globosa (Turcz.) Thell., a species with some characteristics of cadmium hyperaccumulation[J]. Plant Growth Regulation, 2010, 61(1): 67-74.
[52]  Wei S H, Zhou Q X,Mathews S.A newly found cadmium accumulator Taraxacum mongolicum[J]. Journal of Hazardous Materials, 2008, 159: 544-547.
[53]  Baker A J M,Brooks R R.Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989, 1(2): 81-126.
[54]  Baker A J M,Reeves R D,Hajar A S M.Heavy metal accumulation and tolerance in British population of the metallophyte Thlaspi caerulescens J.& C. Presl (Brassicaceae)[J]. New Phytologist, 1994, 127: 61-68.
[55]  Chaney R L, Malik M, Li Y M,et al.Phytoremediation of soil metals[J].Current Opinion in Biotechnology, 1997, 8(3): 279-284.
[56]  Ma L Q, Komar K M, Tu C,et al. A fern that hyperaccumulates arsenic[J].Nature, 2001, 409: 579.
[57]  Wei S H, Zhou Q X, Koval P V. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation[J]. Science of The Total Environment, 2006, 369(1-3): 441-446.
[58]  Blaylock M J, David E, Dushenkov S,et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents[J]. Environmental Science and Technology, 1997, 31(3): 860-865.
[59]  Zhuang P, Yang Q W, Wang H B, et al. Phytoextraction of heavy metals by eight plant species in the field[J]. Water, Air, and Soil Pollution, 2007, 184(1-4): 235-242.
[60]  Hernández-Allica J, Becerril J M, Garbisu C.Assessment of the phytoextraction potential of high biomass crop plants[J]. Environmental Pollution, 2008, 152(1): 32-40.
[61]  Rebele F, Lehmann C. Phytoextraction of cadmium and phytostabilisation with mugwort (Artemisia vulgaris)[J]. Water, Air, and Soil Pollution, 2011, 216(1-4): 93-103.
[62]  参考文献:
[63]  Dong W Q Y, Cui Y, Liu X. Instances of soil and crop heavy metal contamination in China[J]. Soil and Sediment Contamination, 2001, 10(5): 497-510.
[64]  Komarnicki G J K. Lead and cadmium in indoor air and the urban environment[J]. Environmental Pollution, 2005, 136(1): 47-61.
[65]  Arao T, Ishikawa S, Murakami M,et al. Heavy metal contamination of agricultural soil and countermeasures in Japan[J]. Paddy and Water Environment, 2010, 8(3): 247-257.
[66]  Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F,et al. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant[J]. Bioresource Technology, 2010, 101(15): 5862-5867.
[67]  Jabeen R, Ahmad A, Iqbal M. Phytoremediation of heavy metals:Physiological and molecular mechanisms[J]. The Botanical Review, 2009, 75(4): 339-364.
[68]  Wei S H, Zhou Q X, Wang X,et al. A newly-discovered Cd-hyperaccumulator Solanum nigrum L.[J]. Chinese Science Bulletin, 2005, 50(1): 33-38.
[69]  Sun Y B, Zhou Q X, Wang L,et al. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator[J]. Journal of Hazardous Materials, 2009, 161(2-3): 808-814.
[70]  聂发辉. 镉超富集植物商陆及其富集效应[J]. 生态环境, 2006, 15(2): 303-306.
[71]  Liu W, Shu W S, Lan C Y. Viola baoshanensis, a plant that hyperaccumulates cadmium[J]. Chinese Science Bulletin, 2004, 49(1): 29-32.
[72]  Long X X, Wang Y H, Liu H Y. Growth response and uptake differences between two ecotypes of Sedum alfrredii to soils Cd[J]. Journal of Plant Ecology, 2008, 32(1): 168-175.
[73]  Brown S L, Chaney R L, Angle J S,et al. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil[J]. Journal of Environmental Quality, 1994, 23(6): 1151-1157.
[74]  Sridhar B B M, Diehl S V, Han F X,et al. Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea)[J]. Environmental and Experimental Botany, 2005, 54(2): 131-141.
[75]  Singh O V, Labana S, Pandey G,et al. Phytoremediation:an overview of metallic ion decontamination from soil[J]. Applied Microbiology and Biotechnology, 2003, 61: 405-412.
[76]  Dary M, Chamber-Pérez M A, Palomares A J,et al. “In situ” phytostabilization of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria[J]. Journal of Hazardous Materials, 2010, 177(1-3): 323-330.
[77]  Alvarenga P, Gonalves A P, Fernandes R M,et al. Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass[J]. Science of The Total Environment, 2008, 406: 43-56.
[78]  Zhang X F, Xia H P, Li Z A,et al. Potential of four forage grasses in remediation of Cd and Zn contaminated soils[J]. Bioresource Technology, 2010, 101(6): 2063-2066.
[79]  Chen Y, Shen Z, Li X. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals[J]. Applied Geochemistry, 2004, 19(10): 1553-1565.
[80]  Xu P X, Wang Z L. Physiological mechanism of hypertolerance of cadmium in Kentucky bluegrass and tall fescue:Chemical forms and tissue distribution[J]. Environmental and Experimental Botany, 2013, 96: 35-42.
[81]  Steinke K, Stier J C. Nitrogen selection and growth regulator applications for improving shaded turf performance[J]. Crop Science, 2003, 43: 1399-1406.
[82]  DaCosta M, Wang Z L, Huang B R. Physiological adaptation of Kentucky bluegrass to localized soil drying[J]. Crop Science, 2004, 44: 307-314.
[83]  Yang X E, Long X X, Ye H B,et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance)[J]. Plant and Soil, 2004, 259: 181-189.
[84]  Liu X Q, Peng K J, Wang A G,et al. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration[J]. Chemosphere, 2010, 78(9): 1136-1141.
[85]  Zhang S R, Chen M Y, Li T,et al. A newly found cadmium accumulator-Malva sinensis Cavan[J]. Journal of Hazardous Materials, 2010, 173(1-3): 705-709.
[86]  Zhuang P, Ye Z H, Lan C Y,et al. Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species[J]. Plant and Soil, 2005, 276(1-2): 153-162.
[87]  Zhao F J, Lombi E, McGrath S P. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens[J]. Plant and Soil, 2003, 249: 37-43.
[88]  Pietrini F, Zacchini M, Iori V,et al. Spatial distribution of cadmium in leaves and its impact on photosynthesis:examples of different strategies in willow and poplar clones[J]. Plant Biology, 2009, 12(2): 355-363.
[89]  刘柿良, 石新生, 潘远智, 等. 镉胁迫对长春花生长, 生物量及养分积累与分配的影响[J]. 草业学报, 2013, 22(3): 154-161. 浏览
[90]  丁继军, 潘远智, 刘柿良, 等. 土壤重金属镉胁迫对石竹幼苗生长的影响及其机理[J]. 草业学报, 2013, 22(6): 77-85. 浏览
[91]  Krupa Z, Baszynski T. Some aspects of heavy metals toxicity towards photosynthetic apparatus:direct and indirect effects on light and dark reactions[J]. Acta Physiologiae Plantarum, 1995, 7: 55-64.
[92]  张小艾, 李名扬, 汪志辉, 等. 重金属及盐碱对二月兰幼苗生长和生理生化的影响[J]. 草业学报, 2013, 22(2): 187-194. 浏览
[93]  Ayeni O O, Ndakidemi P A, Snyman R G,et al. Chemical, biological and physiological indicators of metal pollution in wetlands[J]. Scientific Research and Essays, 2010, 5(15): 1938-1949.
[94]  Breckle S W, Kahle H. Effects of toxic heavy metals (Cd, Pb) on growth and mineral nutrition of beech (Fagus sylvatica L.)[J]. Vegetatio, 1992, 101: 43-53.
[95]  Liu Y M, Wang K, Xu P X,et al. Physiological responses and tolerance threshold to cadmium contamination in Eremochloa ophiuroides[J]. International Journal of Phytoremediation, 2012, 14(5): 467-480.
[96]  Ci D W, Jiang D, Wollenweber B,et al. Cadmium stress in wheat seedlings:growth, cadmium accumulation and photosynthesis[J]. Acta Physiologiae Plantarum, 2009, 32(2): 365-373.
[97]  Shi G R, Cai Q S. Cadmium tolerance and accumulation in eight potential energy crops[J]. Biotechnology Advances, 2009, 27(5): 555-561.
[98]  Sun Y B, Zhou Q X, Diao C Y. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.[J]. Bioresource Technology, 2008, 99(5): 1103-1110.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133