全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2014 

五节芒与荻人工杂交种F1群体开花物候与生殖特性研究

DOI: 10.11686/cyxb20140313, PP. 118-126

Keywords: 五节芒,,杂交种,开花物候,结实率,减数分裂行为

Full-Text   Cite this paper   Add to My Lib

Abstract:

对五节芒与荻种间人工杂交种群体的开花物候、花粉育性、结实率和花粉母细胞减数分裂行为进行了观察,结果表明,1)F1植株群体和个体花期持续时间长,从6月上中旬至10月中下旬,个体之间花期具很高同步性;通过对抽穗开花分蘖数的统计分析,在杂交种的持续开花过程中,可以将群体和个体的花期分为2个开花高峰,第1次开花高峰出现在6月,第2个开花高峰期出现在9月;从孕穗期和始花期的时间看,杂交种66.07%的个体的花期偏向于早花的荻亲本,31.25%的个体的花期与亲本五节芒相近,只有2.68%的花期晚于五节芒,说明早花性状的遗传力高;开花物候指数与结实率之间的相关分析结果表明,始花时间与结实率呈负相关关系,开花数和花期持续时间与结实率呈正相关关系。2)亲本荻和五节芒花粉育性较高,可育花粉率显著高于F1群体植株;F1群体2次开花高峰的花粉育性分别为(50.79±18.61)%,(65.42±14.71)%,第2次开花高峰时的花粉育性比第1次开花高峰时高;花粉育性在杂交种群体个体间有较大的差异,平均变异系数为29.56%;花粉育性与结实率的关系不密切,相关系数低,未达到显著性水平。3)种间杂交种F1的花粉母细胞减数分裂基本正常,只有少部分的花粉母细胞出现染色体的异常行为,各时期异常行为率均低于2.0%。本试验结果说明五节芒和荻有很近的亲缘关系,开花物候和生殖特性的研究数据表明杂交种进行进一步遗传改良不存在障碍。

References

[1]  Li L Y, Xie P F, Liu F, et al. On meteorological and soil factors and quality of flue-cured tobacco leaves in Liuyang tobacco-growing areas[J]. Journal of Hunan Agricultural University(Natural Sciences), 2006, 32(5): 497-501.
[2]  Dafni A.Pollination ecology[M]. New York: Oxford University Press, 1992: 1-57.
[3]  Mcintosh M E. Flowering phenology and reproductive output in two sister species of Ferocactus(Cactaceae)[J]. Plant Ecology, 2002, 159: 1-13.
[4]  Feng J Y, Zhang Z Y, Li X S, et al. An excellent meiosis experimental material and its producer[J]. Bulletin of Biology, 1986, (09): 18.
[5]  Liu L. Miscanthus, Diandranthus, Triarrhena Nakai[A]. Chen S L, Zhuang T D, Fang W Z, et al. Flora of China[M]. Beijing: Science Press, 1997: 4-26.
[6]  Jensen E, Robson P, Norris J, et al. Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short day response, whilst delayed flowering under long days increases biomass accumulation[J]. Journal of Experimental Botany, 2013, 64(2): 541-552.
[7]  Wu W X, Wang H M. Review on regulated and controlled technologies of florescence for Dendranthema morifolia[J]. Fujian Agricultural Science and Technology, 2001, 3: 21-23.
[8]  Ji K S, Yang X Y, Yang D C, et al. Phenological observation and diurnal change of net photosynthetic rate of Liriodendron[J]. Journal of Nanjing Forestry University(Natural Science Edition), 2002, 26(6): 28-32.
[9]  Ollerton J, Lack A. Relationships between flowering phenology, plant size and reproductive success in Lotus corniculatus (Fabaceae)[J]. Plant Ecology, 1998, 139(1): 35-47.
[10]  Ollerton J, Diaz A. Evidence for stabilizing selection acting on flowering time inArum maculatum (Araceae): the influence of phylogeny on adaptation[J]. Oecologia, 1999, 119(3): 340-348.
[11]  Li X R, Tan D Y, Guo J. Comparison of flowering phenology of two species of Ammopiptanthus(Fabaceae) under ex situ conservation in the Turpan Eremophytes Botanical Garden, Xinjiang[J]. Biodiversity Science, 2006, 14(3): 241-249.
[12]  Augspurger C K. Phenology, flowering synchrony, and fruit set of six neotropical shrubs[J]. Biotropical, 1983, 15(4): 257-267.
[13]  Xiao Y A, He P, Li X H. The flowering phenology and reproductive features of the endangered plant Disanthus cercidifolius var.Longipes H.T.Chang (Hamamelidaceae)[J]. Acta Ecologica Sinica, 2004, 24(1): 14-21.
[14]  Zhao Y J. Studies on the breeding system of Miscanthus sinensis[D]. Changsha: Hunan Agricultural University, 2010.
[15]  Zhang C, Wang X L, Yu H Q, et al. Cytogenetic studies of the intergeneric and interspecific hybrids among the Pseudoroegneria, Roegneria and Elymus (Poaceae: Triticeae)[J]. Acta Prataculturae Sinica, 2009, 18(3): 86-93.
[16]  Ma X F, Jensen E, Alexandrov N, et al. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis[J]. PLoS One, 2012, 7(3): 1-11.
[17]  Zhan Q W, Gao L, Zhang T Z. Analysis on karyotype of Sorghum sudanense and Sorghum bicolor[J]. Acta Prataculturae Sinica, 2006, 15(2): 100-106.
[18]  Yu Z, Yun J F, Ma Y Z, et al. Identification of the Triploid hybrid chromosomes of Elymus canadensis L.×Hordeum brivisubulatum Link.by genomic in situ hybridization[J]. Acta Genetica Sinica, 2004, 31(7): 735-739.
[19]  Lewandowski I, Clifton-Brown J, Scurlock J M O,et al. Miscanthus: European experience with a novel energy crop[J]. Biomass and Bioenergy, 2000, 19(4): 209-227.
[20]  Lewandowski I, Scurlockb J M O, Lindvallc E, et al. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe[J]. Biomass and Bioenergy, 2003, 25(4): 335-361.
[21]  Chen S L, Renvoize S A. Miscanthus Andersson[A]. Flora of China, Vol. 22[M]. St. Louis.: Missouri Botanical Garden Press, 2006: 581-583.
[22]  薛德, 肖亮, 艾辛, 等. 五节芒表型性状和SSR标记遗传多样性分析[J]. 草业学报, 2012, 21(5): 96-106.
[23]  肖亮, 蒋建雄, 易自力, 等. 五节芒种质资源的表型多样性分析[J]. 湖南农业大学学报(自然科学版), 2013, 39(2): 150-154.
[24]  刁英, 胡小虎, 郑兴飞, 等. 利用SRAP和ISSR标记分析五节芒(Miscanthus floridulus)的遗传多样性[J]. 武汉大学学报(理学版), 2010, (5): 578-583.
[25]  肖亮, 蒋建雄, 易自力, 等. 广西省芒野生居群表型多样性研究[J]. 草业学报, 2013, 22(4): 43-50.
[26]  聂刚, 张新全, 黄琳凯, 等. 中国西南区野生芒居群表型变异研究[J]. 草业学报, 2013, 22(5): 52-61.
[27]  黄平, 左海涛, 韩烈保, 等. 拔节期水分胁迫对荻生长和生物质特性的影响[J]. 草地学报, 2007, 15(2): 153-157.
[28]  黄杰, 黄平, 左海涛. 栽培管理对荻生长特性及生物质成分的影响[J]. 草地学报, 2008, 16(6): 646-651.
[29]  侯新村, 范希峰, 左海涛, 等. 氮肥对挖沙废弃地能源草生长特性与生物质产量的影响[J]. 草地学报, 2010, 18(2): 268-273, 279.
[30]  李强, 李加鹏, 何淼. 荻实生苗生物构件对土壤水分胁迫的响应[J]. 草业科学, 2013, 30(6): 893-897.
[31]  何淼, 赵保成, 李强, 等. PEG胁迫对芒和荻种子萌发的影响[J]. 草业科学, 2013, 30(4): 577-582.
[32]  宗俊勤, 陈静波, 聂东阳, 等. 我国不同地区芒和荻种质资源抗盐性的初步评价[J]. 草地学报, 2011, 19(5): 803-807.
[33]  张杰, 周守标, 黄永杰, 等. 能源植物荻对铜胁迫的耐性和积累特性[J]. 水土保持学报, 2013, 27(2): 168-172, 188.
[34]  杨朝东, 张霞, 万勇, 等. 荻草根系统扩展能力和固土作用的研究[J]. 长江大学学报(自然科学版), 2009, 6(3): 19-23.
[35]  陈慧娟, 宁祖林, 张卓文. 五节芒生物学特性及能量生产动态变化[J]. 草业学报, 2012, 21(6): 252-257.
[36]  邓果特, 刘清波, 蒋建雄, 等. 五节芒基因组大小测定[J]. 植物遗传资源学报, 2013, 14(2): 339-341, 346.
[37]  陈少风, 何俊, 周朴华, 等. 芒和五节芒的核型研究[J]. 江西农业大学学报, 2008, 30(1): 123-126.
[38]  秦建桥, 夏北成, 赵鹏, 等. 五节芒(Miscunthus floridulus)不同种群对镉积累与转运的差异研究[J]. 农业环境科学学报, 2011, 30(1): 21-28.
[39]  秦建桥, 赵华荣, 胡萌, 等. 铅胁迫下不同生态型五节芒(Miscanthus floridulus)的抗氧化系统的差异研究[J]. 生态环境学报, 2011, 20(3): 525-531.
[40]  陈慧娟. 五节芒生物量及其热值的动态研究[D]. 武汉: 华中农业大学, 2009.
[41]  龚道生. 五节芒栽培花菇技术与效益的分析[J]. 防护林科技, 2011, (3): 40-42.
[42]  易镇邪, 王禹, 王学华, 等. 3种催熟剂对芒属植物的催熟效果比较[J]. 草业科学, 2013, 30(7): 1052-1056.
[43]  Robson P, Mos M, Clifton-Brown J, et al. Phenotypic variation in senescence in Miscanthus: towards: optimising biomass quality and quantity[J]. Bioenergy Research, 2012, 5(1): 95-105.
[44]  朱玉叶, 艾辛, 蒋建雄, 等. 五节芒与荻人工杂交种的创建与鉴定研究[J]. 中国草地学报, 2013, 35(2): 31-36.
[45]  Reference:
[46]  Sang T, Zhu W X. China’s bioenergy potential[J]. Global Change Biology Bioenergy, 2011, 3(2): 79-90.
[47]  Hastings A. Future energy potential ofMiscanthus in Europe[J]. Global Change Biology Bioenergy, 2009, 1(2): 180-196.
[48]  Lewandowski I, Clifton-Brown J, Scurlock J M O, et al. Miscanthus: European experience with a novel energy crop[J]. Biomass and Bioenergy, 2000, 19(4): 209-227.
[49]  Lewandowski I, Scurlockb J M O, Lindvallc E, et al. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe[J]. Biomass and Bioenergy, 2003, 25(4): 335-361.
[50]  Chen S L, Renvoize S A. Miscanthus Andersson[A]. Flora of China, Vol. 22[M]. St. Louis.: Missouri Botanical Garden Press, 2006: 581-583.
[51]  Xue D, Xiao L, Ai X, et al. Genetic diversity of Miscanthus floridulus revealed by morphological characters and SSR markers[J]. Acta Prataculturae Sinica, 2012, 21(5): 96-106.
[52]  Xiao L, Jiang J X, Yi Z L, et al. Study on phenotypic diversity of Miscanthus floridulus[J]. Journal of Hunan Agricultural University(Natural Sciences), 2013, 39(2): 150-154.
[53]  Diao Y, Hu X H, Zheng X F, et al. Analysis of genetic diversity in Miscanthus floridulus using SRAP and ISSR markers[J]. Journal of Wuhan University(Natural Science Edition), 2010, (5): 578-583.
[54]  Xiao L, Jiang J X, Yi Z L, et al. A study on phenotypic diversity of Miscanthus sinensis natural population in Guangxi province[J]. Acta Prataculturae Sinica, 2013, 22(4): 43-50.
[55]  Nie G, Zhang X Q, Huang L K, et al. Phenotypic variation of wild Miscanthus sinensis populations from southwestern China[J]. Acta Prataculturae Sinica, 2013, 22(5): 52-61.
[56]  Huang P, Zuo H T, Han L B ,et al. Effect of water stress on the growth and biomass characteristics of Amur Silvergrass at the elongation stage[J]. Acta Agrectir Sinica, 2007, 15(2): 153-157.
[57]  Huang J, Huang P, Zuo H T. Effect of cultivation management on the growth characteristics and biomass components of Miscanthus sacchariflorus[J]. Acta Agrestir Sinica, 2008, 16(6): 646-651.
[58]  Hou X C, Fan X F, Zuo H T, et al. Effect of Nitrogen fertilizer on the growth characteristics and biomass yield of bioenergy grasses on abandoned sand excavation lands[J]. Acta Agrectir Sinica, 2010, 18(2): 268-273, 279.
[59]  Li Q, Li J P, He M. Study on the adaptability of Misconstrues sacchariflorus biological components to soil water stress[J]. Pratacultural Science, 2013, 30(6): 893-897.
[60]  He M, Zhao B C, Li Q, et al. Effects of different concentrations of polyethylene glycol on seeds germination of Miscanthus sinensis and Triarrhena sacchariflora[J]. Pratacultural Science, 2013, 30(4): 577-582.
[61]  Zong J Q, Chen J B, Nie D Y, et al. Preliminary evaluation on salinity tolerance of Miscanthus sinensis Anderss.and M.sacchariflorus (Maxim.) Benth.of China[J]. Acta Agrectir Sinica, 2011, 19(5): 803-807.
[62]  Zhang J, Zhou S B, Huang Y J, et al. Copper tolerance and accumulation characteristics of energy plant Miscanthus sacchariflorus (Maxim.) Benth.[J]. Journal of Soil and Water Conservation, 2013, 27(2): 168-172, 188.
[63]  Yang Z D, Zhang X, Wan Y, et al. Estimated spreading capacity and soil stabilization by rhizome and adventitious root systems of Dicao[J]. Journal of Yangtze University(Natural Science Edition), 2009, 6(3): 19-23.
[64]  Chen H J, Ning Z L, Zhang Z W. Studies on the biological characteristics and dynamics of energy production of Miscanthus floridulus[J]. Acta Prataculturae Sinica, 2012, 21(6): 252-257.
[65]  Deng G T, Liu Q B, Jiang J X, et al. Estimation of genome size of miscanthus floridulus[J]. Journal of Plant Genetic Resources, 2013, 14(2): 339-341, 346.
[66]  Chen S F, He J, Zhou P H, et al. The Karyorypes of Micanthus sinensis and M. floridulus[J]. Acta Agriculturae Universitatis Jiangxiensis, 2008, 30(1): 123-126.
[67]  Qin J Q, Xia B C, Zhao P, et al. Accumulation and translocation of Cd in two Miscanthus floridulus populations[J]. Journal of Agro-Environment Science, 2011, 30(1): 21-28.
[68]  Qin J Q, Zhao H R, Hu M, et al. Physiological metabolism and protective enzyme activity of different ecotypes of Miscanthus fioridulus under Pb stress[J]. Ecology and Environmrntal Sciences, 2011, 20(3): 525-531.
[69]  Chen H J. Studies of dynamics of biomass and cloric value for Mriscanthus jloridulus[D]. Wuhan: Huazhong Agricultural University, 2009.
[70]  Gong D S. Analysis on Technology & Benefit of Cultivating Lentinus edodes with Miscanthus floridulus[J]. Protection Forest Science And Technology, 2011, (3): 40-42.
[71]  Yi Z X, Wang Y, Wang X H, et al. Comparative study on ripening effects of three types of ripeners on Miscanthus[J]. Pratacultural Science, 2013, 30(7): 1052-1056.
[72]  Robson P, Mos M, Clifton-Brown J, et al. Phenotypic variation in senescence in Miscanthus: towards: optimising biomass quality and quantity[J]. Bioenergy Research, 2012, 5(1): 95-105.
[73]  Zhu Y Y, Ai X, Jiang J X, et al. Creation and Identification of Artificial Hybrids between Miscanthus floridulus and M.sacchariflorus[J]. Chinese Journal of Grassland, 2013, 35(2): 31-36.
[74]  Zhu M D, Jiang J X, Xiao L, et al. Natural hybridization between Miscanthus sinensis and M.floridulus revealed by phylogenic analysis using morphological traits and Adhl sequences[J]. Acta Prataculturae Sinica, 2012, 21(3): 132-137.
[75]  Xi Q G, Hong H. Description of an introduced plant Miscanthus x giganteus[J]. Pratacultural Science, 2008, 25(2): 26-28.
[76]  参考文献:
[77]  Sang T, Zhu W X. China’s bioenergy potential[J]. Global Change Biology Bioenergy, 2011, 3(2): 79-90.
[78]  Hastings A. Future energy potential of Miscanthus in Europe[J]. Global Change Biology Bioenergy, 2009, 1(2): 180-196.
[79]  朱明东, 蒋建雄, 肖亮, 等. 基于形态性状及Adhl基因序列的芒与五节芒自然杂交现象研究[J]. 草业学报, 2012, 21(3): 132-137.
[80]  席庆国, 洪浩. 外来植物奇岗的生物学特征[J]. 草业科学, 2008, 25(2): 26-28.
[81]  李良勇, 谢鹏飞, 刘峰, 等. 湖南浏阳烟区气候土壤因素和烟叶质量特点[J]. 湖南农业大学学报(自然科学版), 2006, 32(5); 497-501.
[82]  Dafni A.Pollination Ecology[M]. New York: Oxford University Press, 1992: 1-57.
[83]  Mcintosh M E. Flowering phenology and reproductive output in two sister species of Ferocactus(Cactaceae)[J]. Plant Ecology, 2002, 159: 1-13.
[84]  冯静仪, 张振宇, 李兴诗, 等. 一种优良的减数分裂实验材料及其制片[J]. 生物学通报, 1986, (09): 18.
[85]  刘亮. 芒属, 双药芒属, 荻属[A]. 陈守良, 庄体德, 方文哲, 等. 中国植物志[M]. 北京: 科学出版社, 1997: 4-26.
[86]  Jensen E, Robson P, Norris J,et al. Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation[J]. Journal of Experimental Botany, 2013, 64(2): 541-552.
[87]  吴文新, 王洪铭. 菊花花期调控技术的研究概况及展望[J]. 福建农业科技, 2001, 3: 21-23.
[88]  季孔庶, 杨秀艳, 杨德超, 等. 鹅掌楸属树种物候观测和杂种家系苗光合日变化[J]. 南京林业大学学报(自然科学版), 2002, 26(6): 28-32.
[89]  Ollerton J, Lack A. Relationships between flowering phenology, plant size and reproductive success in Lotus corniculatus (Fabaceae)[J]. Plant Ecology, 1998, 139(1): 35-47.
[90]  Ollerton J, Diaz A. Evidence for stabilizing selection acting on flowering time in Arum maculatum (Araceae): the influence of phylogeny on adaptation[J]. Oecologia, 1999, 119(3): 340-348.
[91]  李新蓉, 谭敦炎, 郭江. 迁地保护条件下两种沙冬青的开花物候比较研究[J]. 生物多样性, 2006, 14(3): 241-249.
[92]  Augspurger C K. Phenology, flowering synchrony, and fruit set of six neotropical shrubs[J]. Biotropical, 1983, 15(4): 257-267.
[93]  肖宜安, 何平, 李晓红. 濒危植物长柄双花木开花物候与生殖特性[J]. 生态学报, 2004, 24(1): 14-21.
[94]  赵元杰.芒繁育系统研究[D]. 长沙: 湖南农业大学, 2010.
[95]  张春, 王晓丽, 于海清, 等. 拟鹅观草属与鹅观草属和披碱草属属间及种间杂种的细胞学研究[J]. 草业学报, 2009, 18(3): 86-93.
[96]  Ma X F, Jensen E, Alexandrov N,et al. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis[J]. PLoS One, 2012, 7(3): 1-11.
[97]  詹秋文, 高丽, 张天真. 苏丹草与高粱染色体核型比较研究[J]. 草业学报, 2006, 15(2): 100-106.
[98]  于卓, 云锦风, 马有志, 等. 加拿大披碱草×野大麦三倍体杂种染色体的分子原位杂交鉴定[J]. 遗传学报, 2004, 31(7): 735-739.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133