Li L Y, Xie P F, Liu F, et al. On meteorological and soil factors and quality of flue-cured tobacco leaves in Liuyang tobacco-growing areas[J]. Journal of Hunan Agricultural University(Natural Sciences), 2006, 32(5): 497-501.
[2]
Dafni A.Pollination ecology[M]. New York: Oxford University Press, 1992: 1-57.
[3]
Mcintosh M E. Flowering phenology and reproductive output in two sister species of Ferocactus(Cactaceae)[J]. Plant Ecology, 2002, 159: 1-13.
[4]
Feng J Y, Zhang Z Y, Li X S, et al. An excellent meiosis experimental material and its producer[J]. Bulletin of Biology, 1986, (09): 18.
[5]
Liu L. Miscanthus, Diandranthus, Triarrhena Nakai[A]. Chen S L, Zhuang T D, Fang W Z, et al. Flora of China[M]. Beijing: Science Press, 1997: 4-26.
[6]
Jensen E, Robson P, Norris J, et al. Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short day response, whilst delayed flowering under long days increases biomass accumulation[J]. Journal of Experimental Botany, 2013, 64(2): 541-552.
[7]
Wu W X, Wang H M. Review on regulated and controlled technologies of florescence for Dendranthema morifolia[J]. Fujian Agricultural Science and Technology, 2001, 3: 21-23.
[8]
Ji K S, Yang X Y, Yang D C, et al. Phenological observation and diurnal change of net photosynthetic rate of Liriodendron[J]. Journal of Nanjing Forestry University(Natural Science Edition), 2002, 26(6): 28-32.
[9]
Ollerton J, Lack A. Relationships between flowering phenology, plant size and reproductive success in Lotus corniculatus (Fabaceae)[J]. Plant Ecology, 1998, 139(1): 35-47.
[10]
Ollerton J, Diaz A. Evidence for stabilizing selection acting on flowering time inArum maculatum (Araceae): the influence of phylogeny on adaptation[J]. Oecologia, 1999, 119(3): 340-348.
[11]
Li X R, Tan D Y, Guo J. Comparison of flowering phenology of two species of Ammopiptanthus(Fabaceae) under ex situ conservation in the Turpan Eremophytes Botanical Garden, Xinjiang[J]. Biodiversity Science, 2006, 14(3): 241-249.
[12]
Augspurger C K. Phenology, flowering synchrony, and fruit set of six neotropical shrubs[J]. Biotropical, 1983, 15(4): 257-267.
[13]
Xiao Y A, He P, Li X H. The flowering phenology and reproductive features of the endangered plant Disanthus cercidifolius var.Longipes H.T.Chang (Hamamelidaceae)[J]. Acta Ecologica Sinica, 2004, 24(1): 14-21.
[14]
Zhao Y J. Studies on the breeding system of Miscanthus sinensis[D]. Changsha: Hunan Agricultural University, 2010.
[15]
Zhang C, Wang X L, Yu H Q, et al. Cytogenetic studies of the intergeneric and interspecific hybrids among the Pseudoroegneria, Roegneria and Elymus (Poaceae: Triticeae)[J]. Acta Prataculturae Sinica, 2009, 18(3): 86-93.
[16]
Ma X F, Jensen E, Alexandrov N, et al. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis[J]. PLoS One, 2012, 7(3): 1-11.
[17]
Zhan Q W, Gao L, Zhang T Z. Analysis on karyotype of Sorghum sudanense and Sorghum bicolor[J]. Acta Prataculturae Sinica, 2006, 15(2): 100-106.
[18]
Yu Z, Yun J F, Ma Y Z, et al. Identification of the Triploid hybrid chromosomes of Elymus canadensis L.×Hordeum brivisubulatum Link.by genomic in situ hybridization[J]. Acta Genetica Sinica, 2004, 31(7): 735-739.
[19]
Lewandowski I, Clifton-Brown J, Scurlock J M O,et al. Miscanthus: European experience with a novel energy crop[J]. Biomass and Bioenergy, 2000, 19(4): 209-227.
[20]
Lewandowski I, Scurlockb J M O, Lindvallc E, et al. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe[J]. Biomass and Bioenergy, 2003, 25(4): 335-361.
[21]
Chen S L, Renvoize S A. Miscanthus Andersson[A]. Flora of China, Vol. 22[M]. St. Louis.: Missouri Botanical Garden Press, 2006: 581-583.
Robson P, Mos M, Clifton-Brown J, et al. Phenotypic variation in senescence in Miscanthus: towards: optimising biomass quality and quantity[J]. Bioenergy Research, 2012, 5(1): 95-105.
Sang T, Zhu W X. China’s bioenergy potential[J]. Global Change Biology Bioenergy, 2011, 3(2): 79-90.
[47]
Hastings A. Future energy potential ofMiscanthus in Europe[J]. Global Change Biology Bioenergy, 2009, 1(2): 180-196.
[48]
Lewandowski I, Clifton-Brown J, Scurlock J M O, et al. Miscanthus: European experience with a novel energy crop[J]. Biomass and Bioenergy, 2000, 19(4): 209-227.
[49]
Lewandowski I, Scurlockb J M O, Lindvallc E, et al. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe[J]. Biomass and Bioenergy, 2003, 25(4): 335-361.
[50]
Chen S L, Renvoize S A. Miscanthus Andersson[A]. Flora of China, Vol. 22[M]. St. Louis.: Missouri Botanical Garden Press, 2006: 581-583.
[51]
Xue D, Xiao L, Ai X, et al. Genetic diversity of Miscanthus floridulus revealed by morphological characters and SSR markers[J]. Acta Prataculturae Sinica, 2012, 21(5): 96-106.
[52]
Xiao L, Jiang J X, Yi Z L, et al. Study on phenotypic diversity of Miscanthus floridulus[J]. Journal of Hunan Agricultural University(Natural Sciences), 2013, 39(2): 150-154.
[53]
Diao Y, Hu X H, Zheng X F, et al. Analysis of genetic diversity in Miscanthus floridulus using SRAP and ISSR markers[J]. Journal of Wuhan University(Natural Science Edition), 2010, (5): 578-583.
[54]
Xiao L, Jiang J X, Yi Z L, et al. A study on phenotypic diversity of Miscanthus sinensis natural population in Guangxi province[J]. Acta Prataculturae Sinica, 2013, 22(4): 43-50.
[55]
Nie G, Zhang X Q, Huang L K, et al. Phenotypic variation of wild Miscanthus sinensis populations from southwestern China[J]. Acta Prataculturae Sinica, 2013, 22(5): 52-61.
[56]
Huang P, Zuo H T, Han L B ,et al. Effect of water stress on the growth and biomass characteristics of Amur Silvergrass at the elongation stage[J]. Acta Agrectir Sinica, 2007, 15(2): 153-157.
[57]
Huang J, Huang P, Zuo H T. Effect of cultivation management on the growth characteristics and biomass components of Miscanthus sacchariflorus[J]. Acta Agrestir Sinica, 2008, 16(6): 646-651.
[58]
Hou X C, Fan X F, Zuo H T, et al. Effect of Nitrogen fertilizer on the growth characteristics and biomass yield of bioenergy grasses on abandoned sand excavation lands[J]. Acta Agrectir Sinica, 2010, 18(2): 268-273, 279.
[59]
Li Q, Li J P, He M. Study on the adaptability of Misconstrues sacchariflorus biological components to soil water stress[J]. Pratacultural Science, 2013, 30(6): 893-897.
[60]
He M, Zhao B C, Li Q, et al. Effects of different concentrations of polyethylene glycol on seeds germination of Miscanthus sinensis and Triarrhena sacchariflora[J]. Pratacultural Science, 2013, 30(4): 577-582.
[61]
Zong J Q, Chen J B, Nie D Y, et al. Preliminary evaluation on salinity tolerance of Miscanthus sinensis Anderss.and M.sacchariflorus (Maxim.) Benth.of China[J]. Acta Agrectir Sinica, 2011, 19(5): 803-807.
[62]
Zhang J, Zhou S B, Huang Y J, et al. Copper tolerance and accumulation characteristics of energy plant Miscanthus sacchariflorus (Maxim.) Benth.[J]. Journal of Soil and Water Conservation, 2013, 27(2): 168-172, 188.
[63]
Yang Z D, Zhang X, Wan Y, et al. Estimated spreading capacity and soil stabilization by rhizome and adventitious root systems of Dicao[J]. Journal of Yangtze University(Natural Science Edition), 2009, 6(3): 19-23.
[64]
Chen H J, Ning Z L, Zhang Z W. Studies on the biological characteristics and dynamics of energy production of Miscanthus floridulus[J]. Acta Prataculturae Sinica, 2012, 21(6): 252-257.
[65]
Deng G T, Liu Q B, Jiang J X, et al. Estimation of genome size of miscanthus floridulus[J]. Journal of Plant Genetic Resources, 2013, 14(2): 339-341, 346.
[66]
Chen S F, He J, Zhou P H, et al. The Karyorypes of Micanthus sinensis and M. floridulus[J]. Acta Agriculturae Universitatis Jiangxiensis, 2008, 30(1): 123-126.
[67]
Qin J Q, Xia B C, Zhao P, et al. Accumulation and translocation of Cd in two Miscanthus floridulus populations[J]. Journal of Agro-Environment Science, 2011, 30(1): 21-28.
[68]
Qin J Q, Zhao H R, Hu M, et al. Physiological metabolism and protective enzyme activity of different ecotypes of Miscanthus fioridulus under Pb stress[J]. Ecology and Environmrntal Sciences, 2011, 20(3): 525-531.
[69]
Chen H J. Studies of dynamics of biomass and cloric value for Mriscanthus jloridulus[D]. Wuhan: Huazhong Agricultural University, 2009.
[70]
Gong D S. Analysis on Technology & Benefit of Cultivating Lentinus edodes with Miscanthus floridulus[J]. Protection Forest Science And Technology, 2011, (3): 40-42.
[71]
Yi Z X, Wang Y, Wang X H, et al. Comparative study on ripening effects of three types of ripeners on Miscanthus[J]. Pratacultural Science, 2013, 30(7): 1052-1056.
[72]
Robson P, Mos M, Clifton-Brown J, et al. Phenotypic variation in senescence in Miscanthus: towards: optimising biomass quality and quantity[J]. Bioenergy Research, 2012, 5(1): 95-105.
[73]
Zhu Y Y, Ai X, Jiang J X, et al. Creation and Identification of Artificial Hybrids between Miscanthus floridulus and M.sacchariflorus[J]. Chinese Journal of Grassland, 2013, 35(2): 31-36.
[74]
Zhu M D, Jiang J X, Xiao L, et al. Natural hybridization between Miscanthus sinensis and M.floridulus revealed by phylogenic analysis using morphological traits and Adhl sequences[J]. Acta Prataculturae Sinica, 2012, 21(3): 132-137.
[75]
Xi Q G, Hong H. Description of an introduced plant Miscanthus x giganteus[J]. Pratacultural Science, 2008, 25(2): 26-28.
[76]
参考文献:
[77]
Sang T, Zhu W X. China’s bioenergy potential[J]. Global Change Biology Bioenergy, 2011, 3(2): 79-90.
[78]
Hastings A. Future energy potential of Miscanthus in Europe[J]. Global Change Biology Bioenergy, 2009, 1(2): 180-196.
Jensen E, Robson P, Norris J,et al. Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation[J]. Journal of Experimental Botany, 2013, 64(2): 541-552.
Ollerton J, Lack A. Relationships between flowering phenology, plant size and reproductive success in Lotus corniculatus (Fabaceae)[J]. Plant Ecology, 1998, 139(1): 35-47.
[90]
Ollerton J, Diaz A. Evidence for stabilizing selection acting on flowering time in Arum maculatum (Araceae): the influence of phylogeny on adaptation[J]. Oecologia, 1999, 119(3): 340-348.
Ma X F, Jensen E, Alexandrov N,et al. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis[J]. PLoS One, 2012, 7(3): 1-11.