全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

不同放牧强度下温性草甸草原土壤微生物群落结构PLFAs分析

DOI: 10.11686/cyxb20150312, PP. 115-121

Keywords: 放牧,土壤微生物,群落结构,磷脂脂肪酸,丛枝菌根真菌,草甸草原

Full-Text   Cite this paper   Add to My Lib

Abstract:

土壤微生物群落是土壤质量和生态系统功能变化的敏感指标。为了探讨放牧对土壤微生物群落结构的影响,以呼伦贝尔草甸草原肉牛控制放牧试验为平台,分析4种不同放牧强度(对照区G0.00:0.00Au/hm2、轻度放牧G0.23:0.23Au/hm2、中度放牧G0.46:0.46Au/hm2、重度放牧G0.92:0.92Au/hm2)下温性草甸草原土壤微生物群落结构的变化。结果表明,放牧改变了土壤微生物的组成,但不影响功能菌的优势地位。土壤总微生物量随着放牧强度的增加表现为先减少后增加的趋势,即为对照区最高,中度放牧G0.46最低,重度放牧G0.92出现小幅度的回升;细菌、革兰氏阴性菌、腐生真菌、丛枝菌根真菌(AMF)生物量也呈现相同变化。革兰氏阳性菌、放线菌生物量则随着放牧强度的增加而增加。此外,AMF对于放牧干扰最为敏感(各放牧强度下极显著差异P<0.01)。除趋势对应分析结果表明,对照区G0.00和轻度放牧G0.23处理下土壤的微生物群落结构较为相似,中度放牧G0.46和重度放牧G0.92处理导致微生物群落结构发生大幅度改变。有机质、速效磷是影响微生物种类和数量的重要养分因素。

References

[1]  Bach E M, Baer S G, Meyer C K, et al. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biology and Biochemistry, 2010, 42(12): 2182-2191.
[2]  Mrtensson L, Olsson P A. Reductions in microbial biomass along disturbance gradients in a semi-natural grassland. Applied Soil Ecology, 2012, 62: 8-13.
[3]  Wu Y P. Studies on soil microbial community structure based on phospholipid fatty acid (PLFA) analysis. Hangzhou: Zhejiang University, 2009.
[4]  Zhang Q F, Liu B, Lin Y Z, et al. The diversity of phospholipid fatty acid (PLFA) biomarker for the microbial community in soil. Acta Ecologica Sinica, 2006, 29(8):4127-4137.
[5]  Yan R R, Yan Y C, Xin X P, et al. Changes in microorganisms and enzyme antivities in soil under different grazing intensities in meadow steppe, Inner Mongolia. Ecology and Environmental Sciences, 2011, 20(2): 259-265.
[6]  Zhang C X, Nan Z B. Changeable characteristics of three soil microbial groups under different grazing intensities in Loess Plateau. Pratacultural Science, 2010, 27(11): 131-136.
[7]  Zhang S, Zhang J N, Lai X, et al. Analysis of microbial biomass C,N and soil microbial community struture of Stipa steppes using PLFA at grazing and fenced in Inner Mongolia, China. Journal of Agro-Environment Science, 2011, 30(6): 1126-1134.
[8]  Clegg C D. Impact of cattle grazing and inorganic fertiliser additions to managed grasslands on the microbial community composition of soils. Applied Soil Ecology, 2006, 31(1-2): 73-82.
[9]  Ingram L J, Stahl P D, Schuman G E, et al. Grazing impacts on soil carbon and microbial communities in a mixed-grass ecosystem. Soil Science Society of America Journal, 2008, 72(4): 939.
[10]  Allison V J, Miller R M, Jastrow J D, et al. Changes in soil microbial community structure in a tallgrass prairie chronosequence. Soil Science Society of America Journal, 2005, 69(5): 1412.
[11]  Zogg G P, Zak D R, Ringelberg D B, et al. Compositional and functional shifts in microbial communities due to soil warming. Soil Science Society of America Journal, 1997, 61(2): 475.
[12]  Hu L, Wang C T, Wang G X, et al. Changes in the activities of soil enzymes and microbial community structure at different degradation successional of alpine meadows in the headwater region of Three Rivers, China. Acta Prataculturae Sinica, 2014, 23(3): 8-19.
[13]  Bardgett R D, Hobbs P J, Frostegard A. Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils, 1996, 22: 261-264.
[14]  Olsson P A. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiology Ecology, 1999, 29: 303-310.
[15]  Bao S D. Soil agricultural chemistry analysis (The third edition) . Beijing: China Agriculture Press, 2000: 28-49.
[16]  Xia B C. Effect of vegetation on structure on soil microbial community. Chinese Journal of Applied Ecology, 1998, 9(3): 296-300.
[17]  Hu Y L, Wang S L, Yan S K. Research advances on the factors influencing the activity and community structure of soil microorganism. Chinese Journal of Soil Science, 2006, 37(1): 170-176.
[18]  Jansa J, Mozafar A, Anken T R, et al. Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza, 2002, 12(5): 225-234.
[19]  Schnoor T K, Lekberg Y, Rosendahl S, et al. Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza, 2011, 21(3): 211-220.
[20]  Klumpp K, Fontaine S, Attard E, et al. Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community. Journal of Ecology, 2009, 97(5): 876-885.
[21]  Donald R Z, William E H, David C W, et al. Plant diversity, soil microbial communities, and ecosystem function: are there and links. Ecology, 2003, 84(8): 2042-2050.
[22]  Zhang T, Weng Y, Yao F J, et al. Effect of grazing intensity on ecological stoichiometry of Deyeuxia angustifolia and meadow soil. Atca Prataculturae Sinica, 2014, 23(2):20-28.
[23]  参考文献:
[24]  吴愉萍. 基于磷脂脂肪酸(PLFA)分析技术的土壤微生物群落结构多样性的研究. 杭州: 浙江大学, 2009.
[25]  张秋芳, 刘波, 林营志, 等. 土壤微生物群落磷脂脂肪酸PLFA生物标记多样性. 生态学报, 2006, 29(8):4127-4137.
[26]  闫瑞瑞, 闫玉春, 辛晓平, 等. 不同放牧强度下草甸草原土壤微生物和酶活性研究. 生态环境学报, 2011, 20(2): 259-265.
[27]  张成霞,南志标. 放牧对草地土壤理化特性影响的研究进展.草业科学, 2010, 27(11): 131-136.
[28]  赵帅, 张静妮, 赖欣, 等. 放牧与围栏内蒙古针茅草原土壤微生物生物量碳、氮变化及微生物群落结构PLFA分析.农业环境科学学报, 2011, 30(6): 1126-1134.
[29]  胡雷, 王长庭, 王根绪, 等. 三江源不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化. 草业学报, 2014, 23(3): 8-19. 浏览
[30]  鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000: 28-49.
[31]  夏北成. 植被对土壤微生物群落结构的影响. 应用生态学报, 1998, 9(3): 296-300.
[32]  胡亚林, 汪思龙, 颜绍馗. 影响土壤微生物活性与群落结构因素研究进展. 土壤通报, 2006, 37(1): 170-176.
[33]  王光华, 金剑, 徐美娜, 等. 植被、土壤及土壤管理对土壤微生物群落结构的影响. 生态学杂志, 2006, 25(5): 550-556.
[34]  王启兰, 王长庭, 杜岩功, 等. 放牧对高寒草甸草原土壤微生物量碳的影响及其与土壤环境的关系. 草业学报, 2008, 17(2): 39-46.
[35]  张婷, 翁月, 姚凤娇, 等. 放牧强度对草甸植物小叶章及土壤化学计量比的影响. 草业学报, 2014, 23(2): 20-28.
[36]  Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biology and Fertility of Soils, 1999, 29(2): 111-129.
[37]  Wang G H, Jin J, Xu M N, et al. Effect of plant,soil and soil management on soil microbial community diversity. Chinese Journal of Ecology, 2006, 25(5): 550-556.
[38]  Wang Q L, Wang C T, Du Y G, et al. Grazing impact on soil microbial biomass carbon and relationship with soil environment in alpine Kobresia meadow. Acta Prataculturae Sinca, 2008, 17(2): 39-46.
[39]  Wang K H, Mcsorley R, Bohlen P, et al. Cattle grazing increases microbial biomass and alters soil nematode communities in subtropical pastures. Soil Biology and Biochemistry, 2006, 38(7): 1956-1965.
[40]  Raiesi F, Asadi E. Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem. Biology and Fertility of Soils, 2006, 43(1): 76-82.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133