全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

不同密度短星翅蝗危害后羊草的高光谱变化及对产草量的影响

DOI: 10.11686/cyxb20150320, PP. 195-203

Keywords: 短星翅蝗,羊草,归一化植被指数(NDVI)

Full-Text   Cite this paper   Add to My Lib

Abstract:

为建立羊草草地高光谱植被指数(NDVI)与短星翅蝗危害密度之间的关系模型,估计短星翅蝗危害造成的牧草损失,使用短星翅蝗按5,10,20,40和60头/m25个密度梯度在羊草草地进行田间取食危害试验,测定不同危害时长后的NDVI值,最后根据NDVI和生物量的对应关系计算蝗虫危害后的牧草损失量。结果发现短星翅蝗危害羊草草地后,随短星翅蝗密度增加,NDVI值呈现逐渐降低的趋势,但是在密度为10头/m2时,归一化植被指数NDVI值略有上升。模拟短星翅蝗危害不同时间后NDVI与密度之间的关系方程为:Y=0.5932+0.0014x-6.93×10-5x2(5d),Y=0.5950-4.8500×10-4x-4.01×10-5x2(10d),Y=0.5848-0.0024x-1.61×10-5x2(15d),Y=0.6422-0.0031x-2.12×10-5x2(20d)。其中,y为植被指数NDVI,x为蝗虫密度。同时研究发现,低密度情况下(不大于20头/m2),随危害时间延长短星翅蝗取食对NDVI校正值无显著影响;高密度情况下(大于20头/m2),随时间延长NDVI校正值迅速降低,不同密度间的差异显著。根据草地生物量与NDVI的回归方程(y=614.15x-119.28)将NDVI值转换成牧草损失量,发现随虫口密度增加,牧草损失量呈增加趋势。低密度短星翅蝗(5,10头/m2)危害情况下,羊草草地有超补偿作用,当蝗虫密度超过40头/m2时,生物量降低趋势非常明显。研究结果表明,归一化植被指数NDVI变化与蝗虫危害密度相关关系显著,随着蝗虫密度的增大,NDVI的值先增长后降低。根据蝗虫危害造成的光谱变化,可以估计蝗虫危害密度及造成的损失。本研究为进一步开展蝗灾的大区域遥感监测奠定了基础。

References

[1]  Pettorelli N, Vik J O, Mysterud A, et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 2005, 20(9): 503-510.
[2]  Qiao H B, Jiang J W, Cheng D F, et al. Comparison of hyperspectral characteristics in tobacco aphid damage. Chinese Bulletin of Entomology, 2007, 1: 015.
[3]  Wu T, Ni S X, Li Y M, et al. Monitoring of the damage intensity extent by oriental migration locust using of hyper-spectra data measured at ground surface. Journal of Remote Sensing, 2007, 11(1): 103-108.
[4]  Ni S, Wu T. Monitoring the intensity of locust damage to vegetation using hyper-spectra data obtained at ground surface. Optical Engineering Applications. International Society for Optics and Photonics, 2007: 66790B-66790B-9.
[5]  Lu H, Han J G, Zhang L D. Study on hyper-spectral remote sensing models for monitoring damage of Oedaleus asiaticus (Orthoptera: Acrididae). Spectroscope and Spectral Analysis, 2009, 29(3): 745-748.
[6]  Ji R, Xie B Y, Li D M, et al. Use of MODIS data to monitor the oriental migratory locust plague. Agriculture, Ecosystems & Environment, 2004, 104(3): 615-620.
[7]  Yang H S, Wang C B, Yu F, et al. Vegetation dynamics in locust occurrence area of Jeminay based on MODIS—NDVI. Jiangsu Agricultural Sciences, 2013, 41(5): 354-356.
[8]  Zhao F J, Wu H H, Liu Z Y, et al. Application of hyperspectral remote sensing in the biomass monitor of two grassland types in Xilinhot. Acta Agrestia Sinica, 2013, 21(6): 1059-1064.
[9]  Liang L, Zhang L P, Lin H, et al. Estimating canopy leaf water content in wheat based on derivative spectra. Scientia Agricultura Sinica, 2013, 46(1): 18-29.
[10]  Huang C Y, Wang D W, Huang D C, et al. Monitoring growing status of processing tomato based on hyperspectral vegetative index. Remote Sensing Information, 2012, 27(5):26-30.
[11]  Rouse J W. Monitoring vegetation systems in the Great Plains with ERTS.NASA. Goddard Space Flight Center 3 d ERTS-1 Symp, 1974, 309-317.
[12]  Ma J, Han X, Hasibagan, et al. Monitoring East Asian migratory locust plagues using remote sensing data and field investigations. International Journal of Remote Sensing, 2005, 26(3): 629-634.
[13]  Sugumaran R, Voss M. Object-oriented classification of LIDAR-fused hyperspectral imagery for tree species identification in an urban environment. Urban Remote Sensing Joint Event, IEEE, 2007: 1-6.
[14]  Boschetti M, Boschetti L, Oliveri S, et al. Tree species mapping with Airborne hyper-spectral MIVIS data: the Ticino Park study case. International Journal of Remote Sensing, 2007, 28(6): 1251-1261.
[15]  Vaiphasa C, Ongsomwang S, Vaiphasa T, et al. Tropical mangrove species discrimination using hyperspectral data: a laboratory study. Estuarine, Coastal and Shelf Science, 2005, 65(1): 371-379.
[16]  He K S, Rocchini D, Neteler M, et al. Benefits of hyperspectral remote sensing for tracking plant invasions. Diversity and Distributions, 2011, 17(3): 381-392.
[17]  Sheeren D, Fauvel M, Ladet S, et al. Mapping ash tree colonization in an agricultural mountain landscape: Investigating the potential of hyperspectral imagery. Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, 2011: 3672-3675.
[18]  Salazar L, Kogan F, Roytman L. Use of remote sensing data for estimation of winter wheat yield in the United States. International Journal of Remote Sensing, 2007, 28(17): 3795-3811.
[19]  Becker-Reshef I, Vermote E, Lindeman M, et al. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment, 2010, 114(6): 1312-1323.
[20]  Santin-Janin H, Garel M, Chapuis J L, et al. Assessing the performance of NDVI as a proxy for plant biomass using non-linear models: a case study on the Kerguelen archipelago. Polar Biology, 2009, 32(6): 861-871.
[21]  Verbesselt J, Somers B, van Aardt J A N, et al. Monitoring herbaceous biomass and water content with SPOT VEGETATION time-series to improve fire risk assessment in savanna ecosystems. Remote Sensing of Environment, 2006, 101(3): 399-414.
[22]  Sims D A, Rahman A F, Cordova V D, et al. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. Journal of Geophysical Research: Biogeosciences (2005-2012), 2006, 111(G4). DOI: 10.1029/2006JG000162.
[23]  吴彤, 倪绍祥, 李云梅, 等. 基于地面高光谱数据的东亚飞蝗危害程度监测. 遥感学报, 2007, 11(1): 103-108.
[24]  卢辉, 韩建国, 张录达. 高光谱遥感模型对亚洲小车蝗危害程度研究. 光谱学与光谱分析, 2009, 29(3): 745-748.
[25]  杨洪升, 王长宝, 于非, 等. 基于 MODIS-NDVI的吉木乃蝗区植被动态. 江苏农业科学, 2013, 41(5): 354-356.
[26]  赵凤杰, 吴惠惠, 刘朝阳, 等. 高光谱遥感在锡林浩特2种草地类型生产力监测中的应用. 草地学报, 2013, 21(6): 1059-1064.
[27]  梁亮, 张连蓬, 林卉, 等.基于导数光谱的小麦冠层叶片含水量反演. 中国农业科学, 2013, 46(1): 18-29.
[28]  黄春燕, 王登伟, 黄鼎程, 等.基于高光谱植被指数的加工番茄生长状况监测研究.遥感信息, 2012, 27(5): 26-30.
[29]  章超斌, 李建龙, 张颖, 等. 基于RGB模式的一种草地盖度定量快速测定方法研究. 草业学报, 2013, 22(4): 220-226.
[30]  杨红飞, 李建龙, 穆少杰, 等. 新疆三种主要草地植被类型的高光谱反射特征研究. 草业学报, 2012, 21(6): 258-266.
[31]  钱育蓉, 于炯, 贾振红, 等. 新疆典型荒漠草地的高光谱特征提取和分析研究. 草业学报, 2013, 22(1): 157-166.
[32]  宋开山, 张柏, 王宗明, 等. 大豆叶绿素含量高光谱反演模型研究. 农业工程学报, 2006, 22(8): 16-21.
[33]  陈梦蝶, 黄晓东, 侯秀敏, 等. 青海省草原鼠害区域草地生物量及盖度动态监测研究. 草业学报, 2013, 22(4): 247-256. 浏览
[34]  Rhee J, Im J, Carbone G J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sensing of Environment, 2010, 114(12): 2875-2887.
[35]  Caccamo G, Chisholm L A, Bradstock R A, et al. Assessing the sensitivity of MODIS to monitor drought in high biomass ecosystems. Remote Sensing of Environment, 2011, 115(10): 2626-2639.
[36]  Rojas O, Vrieling A, Rembold F. Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sensing of Environment, 2011, 115(2): 343-352.
[37]  Huete A, Didan K. MODIS seasonal and inter-annual responses of semiarid ecosystems to drought in the Southwest USA. Geoscience and Remote Sensing Symposium, 2004.IGARSS’04.Proceedings.2004 IEEE International. IEEE, 2004: 1538-1541.
[38]  Deshayes M, Guyon D, Jeanjean H, et al. The contribution of remote sensing to the assessment of drought effects in forest ecosystems. Annals of Forest Science, 2006, 63(6): 579-595.
[39]  Carro H, Sepulcre G, Horion S, et al. A multitemporal and non-parametric approach for assessing the impacts of drought on vegetation greenness: A case study for Latin America. EARSeL eProceedings, 2013, 12(1): 8.
[40]  Zhang C B, Li J L, Zhang Y, et al. A quantitative analysis method for measuring grassland coverage based on the RGB model. Acta Prataculturae Sinica, 2013, 22(4): 220-226.
[41]  Yang H F, Li J L, Mu S J, et al. Analysis of hyperspectral reflectance characteristics of three main grassland types in Xinjiang. Acta Prataculturae Sinica, 2012, 21(6): 258-266.
[42]  Qian Y R, Yu J, Jia Z H, et al. Extraction and analysis of hyper-spectral data from typical desert grassland in Xinjiang. Acta Prataculturae Sinica, 2013, 22(1): 157-166.
[43]  McCulloch L, Hunter D M. Identification and monitoring of Australian plague locust habitats from Landsat. Remote Sensing of Environment, 1983, 13(2): 95-102.
[44]  Sivanpillai R, Latchininsky A V. Can late summer Landsat data be used for locating Asian migratory locust, Locusta migratoria migratoria, oviposition sites in the Amudarya River delta, Uzbekistan. Entomologia Experimentalis et Applicata, 2008, 128(2): 346-353.
[45]  Tratalos J A, Cheke R A. Can NDVI GAC imagery be used to monitor desert locust breeding areas. Journal of Arid Environments, 2006, 64(2): 342-356.
[46]  Latchininsky A V, Sivanpillai R. Locust Habitat Monitoring and Risk Assessment Using Remote Sensing and GIS Technologies. Integrated Management of Arthropod Pests and Insect Borne Diseases. Netherlands: Springer, 2010: 163-188.
[47]  Despland E, Rosenberg J, Simpson S J. Landscape structure and locust swarming: a satellite’s eye view. Ecography, 2004, 27(3): 381-391.
[48]  Sivanpillai R, Latchininsky A V, Driese K L, et al. Mapping locust habitats in River Ili Delta, Kazakhstan, using LANDSAT imagery. Agriculture, Ecosystems &Environment, 2006, 117(2): 128-134.
[49]  Song K S, Zhang B, Wang Z M, et al. Inverse model for estimating soybean chlorophyII concentration using in-situ collected canopy hyperspectral data. Transactions of the CSAE, 2006, 22(8): 16-21.
[50]  Cho M A, Skidmore A, Corsi F, et al. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. International Journal of Applied Earth Observation and Geoinformation, 2007, 9(4): 414-424.
[51]  Mutanga O, Skidmore A K. Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing, 2004, 25(19): 3999-4014.
[52]  Chen M D, Huang X D, Hou X M, et al. Dynamic monitoring of biomass and vegetation coverage in rodent damaged grassland regions of Qinghai province, China. Acta Prataculturae Sinica, 2013, 22(4): 247-256.
[53]  参考文献:

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133