全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2012 

贺兰山不同海拔土壤颗粒有机碳、氮特征

, PP. 54-60

Keywords: 草地,贺兰山,土壤颗粒有机碳,土壤颗粒有机氮

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用颗粒大小的物理分组方法,测定了贺兰山(西坡)不同海拔具有代表性的8个样地的草地土壤颗粒有机碳和颗粒有机氮含量,并且分析了土壤颗粒碳、氮分配比例与植被特征及环境因子的关系。结果表明,土壤颗粒碳、氮含量随海拔的降低而显著降低,随土层深度的增加而降低;在4个植被类型中,二者在高山草甸最高,在草原化荒漠最低。土壤颗粒碳、氮分配比例随海拔的降低表现出先降低后升高的趋势,在高山草甸最高,山地荒漠草原最低。土壤颗粒碳、氮分配比例与植被盖度、地上生物量、年均降水量呈极显著的正相关关系,与年均温呈极显著的负相关关系。

References

[1]  向成华, 栾军伟, 骆宗诗, 等. 川西沿海拔梯度典型植被类型土壤活性有机碳分布. 生态学报, 2010, 30(4): 1025-1034.
[2]  傅华, 裴世芳, 张洪荣. 贺兰山西坡不同海拔梯度草地土壤氮特征. 草业学报, 2005, 14(6): 50-56.
[3]  Franzluebbers A J, Stuedemann J A. Particulate and non-particulate fractions of soil organic carbon under pastures in the Southern Piedmont USA. Environmental Pollution, 2002, 116: 53-62.
[4]  中国土壤学会. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999.
[5]  徐侠, 陈月琴, 汪家社, 等. 武夷山不同海拔高度土壤活性有机碳变化. 应用生态学报, 2008, 19(3): 539-544.
[6]  Hendrick R L, Pregitzer K S. Temporal and depth related patterns of fine root dynamics in northern hardwood forest. Journal of Ecology, 1996, 84(2): 167-176.
[7]  肖波, 武菊英, 王庆梅, 等. 四种禾本科牧草对官厅水库库滨荒地的培肥效应研究. 草业学报, 2010, 19(5): 113-121.
[8]  王长庭, 龙瑞军, 王根绪, 等. 高寒草甸群落地表植被特征与土壤理化性状、土壤微生物之间的相关性研究. 草业学报, 2010, 19(6): 25-34.
[9]  徐侠, 王丰, 栾以玲, 等. 武夷山不同海拔植被土壤易氧化碳. 生态学杂志, 2008, 27(7): 1112-1115.
[10]  Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 2002, 241: 155-176.
[11]  Hassink J. Decomposition rate constants of size and density fractions of soil organic matter. Soil Science Society of America Journal, 1995, 59: 1631-1635.
[12]  吴建国, 艾丽, 田自强, 等. 祁连山中部土壤颗粒组分有机质碳含量及其与海拔和植被的关系. 生态环境, 2008, 17(6): 2358-2365.
[13]  Gregoricha E G, Beareb M H, Mckima U F, et al. Chemical and biological characteristics of physically uncomplexed organic matter. Soil Science Society of America Journal, 2006, 70: 967-974.
[14]  李东, 黄耀, 吴琴, 等. 青藏高原高寒草甸生态系统土壤有机碳动态模拟研究. 草业学报, 2010, 19(2): 160-168.
[15]  Ohashi M, Gyokusen K, Saito A. Measurement of carbon dioxide evolution from a Japanese cedar (Cryptomeria japonica D. Don) forest floor using an open-flow chamber method. Forest Ecology and Management, 1999, 123: 105-114.
[16]  杨晓梅, 程积民, 孟蕾, 等. 黄土高原森林草原区土壤有机碳库研究. 草业科学, 2010, 27(02): 18-23.
[17]  王晶, 张旭东, 解宏图, 等. 现代土壤有机质研究中新的量化指标概述. 应用生态学报, 2003, 14(10): 1809-1812.
[18]  吴建国, 张小全, 王彦辉, 等. 土地利用变化对土壤物理组分中有机碳分配的影响. 林业科学, 2002, 38(4): 19-29.
[19]  Christensen B T. Physical fraction of soil and organic matter in primary particle size and density separates. Advance in Soil Science. New York: Springer Verlag, 1992: 1-90.
[20]  Camberdella C A, Elliott E T. Carbon and nitrogen dynamic of some fraction from cultivated grassland soils. Soil Science Society of America Journal, 1994, 58: 123-130.
[21]  Solomon D, Lehmann J, Zech W L. Use effects on soil organic matter properties of chromic luvisols in semiarid northern Tanzania: carbon, nitrogen, lignin and carbohydrates. Agriculture Ecosystems and Environment, 2002, 78: 202-213.
[22]  Motavalli P, Discekici P H, Kuhn J. The impact of land clearing and agricultural practices on soil organic C fractions and CO2 efflux in the Northern Guam aquifer. Agriculture Ecosystems and Environment, 2000, 79: 17-27.
[23]  姜培坤. 不同林分下土壤活性有机碳库研究. 林业科学, 2005, 41(1): 10-13.
[24]  钟芳, 赵谨, 孙荣高, 等. 兰州南北两山五类乔灌木林草地土壤养分与土壤微生物空间分布研究. 草业学报, 2010, 19(3): 94-101.
[25]  阿拉善盟计划委员会. 阿拉善国土资源. 呼和浩特: 内蒙古人民出版社, 1992.
[26]  任继周. 草业科学研究方法. 北京: 中国农业出版社, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133