全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2012 

低磷胁迫对黄花苜蓿生理特性的影响

, PP. 242-249

Keywords: 黄花苜蓿,低磷胁迫,生理特性,柠檬酸释放

Full-Text   Cite this paper   Add to My Lib

Abstract:

我国绝大部分土壤缺乏有效磷,严重限制了作物产量的提高。黄花苜蓿耐寒、耐旱、耐贫瘠,但其对磷缺乏的响应和适应机制尚未见报道。以呼盟黄花苜蓿与锡盟黄花苜蓿为材料,研究了不同供磷水平对黄花苜蓿生长、根系形态、柠檬酸分泌和光合特性的影响,探讨了黄花苜蓿适应低磷胁迫的机制。结果表明,低磷(5μmol/LH2PO4-)胁迫显著降低了黄花苜蓿的生物量、根系表面积、总根长、根系体积、地上部磷含量、净光合速率、气孔导度与蒸腾速率,但增加了黄花苜蓿柠檬酸释放速率。常磷(500μmol/LH2PO4-)处理下,呼盟黄花苜蓿与锡盟黄花苜蓿的各项指标之间没有显著差异,但低磷处理下,锡盟黄花苜蓿干重、鲜重、株高、地上部磷含量、净光合速率、气孔导度与蒸腾速率等下降幅度明显较小,而主根长与柠檬酸释放速率的增加幅度明显较大,表明锡盟黄花苜蓿较呼盟黄花苜蓿更耐低磷。

References

[1]  Raghothama K G. Phosphate transport and signaling. Current Opinion in Plant Biology, 2000, 3(3): 182-187.
[2]  Raghothama K G. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 665-693.
[3]  Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 2003, 157(3): 423-447.
[4]  Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 2001, 237(2): 173-195.
[5]  李生秀. 植物营养与肥料学科的现状与展望. 植物营养与肥料学报, 1999, 5(3): 193-205.
[6]  王庆仁, 李继云, 李振声. 植物高效利用土壤难溶态磷研究动态及展望. 植物营养与肥料学报, 1998, 4(2): 107-116.
[7]  顾益初, 蒋柏蕃. 石灰性土壤无机磷分级的测定方法. 土壤, 1990, 22(2): 101-102.
[8]  张漱茗, 于淑芳. 石灰性土壤中无机磷形态和有效性的研究. 土壤肥料, 1992, 3: 1-4.
[9]  严小龙, 张福锁. 植物营养遗传学. 北京: 中国农业出版社, 1997.
[10]  严小龙, 黄志武, 卢仁俊, 等. 关于作物磷营养效率的遗传学研究. 土壤, 1992, 24(2): 102-104.
[11]  Plesnicar M, Kastori R, Petrovic N, et al. Photosynthesis and chlorophyll fluorescence in sunflower (Helianthus-annuus L.) leaves as affected by phosphorus nutrition. Journal of Experimental Botany, 1994, 45(7): 919-924.
[12]  Lima J D, Da Matta F M, Mosquim P R. Growth attributes, xylem sap composition, and photosynthesis in common bean as affected by nitrogen and phosphorus deficiency. Journal of Plant Nutrition, 2000, 23(7): 937-947.
[13]  Jacob J, Lawlor D W. Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat Plants . Journal of Experimental Botany, 1991, 42(8): 1003-1011.
[14]  王艳, 孙杰, 王荣萍, 等. 玉米自交系苗期生物学性状与磷效率的相关性. 山西农业大学学报(自然科学版), 2003, 23(1): 28-31.
[15]  Lynch J. Root architecture and plant productivity. Plant Physiology, 1995, 109(1): 7-13.
[16]  Lynch J P, Brown K M. Topsoil foraging-an architectural adaptation of plants to low phosphorus availability. Plant and Soil, 2001, 237(2): 225-237.
[17]  李海波, 夏铭, 吴平. 低磷胁迫对水稻苗期侧根生长及养分吸收的影响. 植物学报, 2001, 43(11): 1154-1160.
[18]  廖红, 严小龙. 菜豆根构型对低磷胁迫的适应性变化及基因型差异. 植物学报, 2000, 42(2): 158-163.
[19]  Williamson L C, Ribrioux S, Fitter A H, et al. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology, 2001, 126(2): 875-882.
[20]  Neumann G, Martinoia E. Cluster roots-an underground adaptation for survival in extreme environments. Trends in Plant Science, 2002, 7(4): 162-167.
[21]  Shen J, Rengel Z, Tang C, et al. Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil-grown Lupinus albus. Plant and Soil, 2003, 248(1-2): 199-206.
[22]  Shane M W, Lambers H. Cluster roots: A curiosity in context. Plant and Soil, 2005, 274(1-2): 101-125.
[23]  王俊杰, 云锦凤, 吕世杰. 黄花苜蓿种质的优良特性与利用价值. 内蒙古农业大学学报(然科学版), 2008, 29(1): 215-219.
[24]  秦峰梅, 张红香, 武祎, 等. 盐胁迫对黄花苜蓿发芽及幼苗生长的影响. 草业学报, 2010, 19(4), 71-78
[25]  Lesins K A, Lesins I. Genus Medicago (Leguminasae): A Taxogenetic Study. Netherlands, Kluwer Dordrecht, 1979.
[26]  Riday H, Brummer E C, Moore K J. Heterosis of forage quality in alfalfa. Crop Science, 2002, 42(4): 1088-1093.
[27]  Riday H, Brummer E C. Heterosis of agronomic traits in alfalfa. Crop Science, 2002, 42(4): 1081-1087.
[28]  武保国. 黄花苜蓿的栽培和利用. 中国农学通报, 1993, 9(3): 50-52.
[29]  Kimura K, Yamasaki S. Accurate root length and diameter measurement using NIH Image: use of Pythagorean distance for diameter estimation. Plant and Soil, 2003, 254(2): 305-315.
[30]  申建波. 根分泌物中低分子量有机酸和酚酸的分离与测定. 北京: 中国农业大学, 1998.
[31]  Shen J, Li H, Neumannb G, et al. Nutrient uptake, cluster root formation and exudation of protons and citrate in Lupinus albus as affected by localized supply of phosphorus in a split-root system. Plant Science, 2005, 168(3): 837-845.
[32]  Longstreth D J, Nobel P S. Nutrient influences on leaf photosynthesis: effects of nitrogen, phosphorus, and potassium for Gossypium Hirsutum L.. Plant Physiology, 1980, 65(3): 541-543.
[33]  Hoffland E, Findenegg G R, Nelemans J A. Solubilization of rock phosphate by rape. II. Local root exudation of organic-acids as a response to P-starvation. Plant and Soil, 1989, 113(2): 161-165.
[34]  Usuda H, Shimogawara K. Phosphate deficiency in maize. I. Leaf phosphate status, growth, photosynthesis ans carbon partitioning. Plant and Cell Physiology, 1991, 32(4): 497-504.
[35]  Qiu J, Israel D W. Diurnal starch accumulation and utilization in phosphorus-deficient soybean plants. Plant Physiology, 1992, 98(1): 316-323.
[36]  方子森, 高凌花, 张恩和, 等. 人工施用氮肥、磷肥对宽叶羌活产量和质量的影响. 草业学报, 2010, 19(4), 54-60.
[37]  杨治平, 张强, 周怀平, 等. 不同施磷水平对饲用柠条营养和产量的影响. 草业学报, 2010, 19(2), 103-108.
[38]  符云鹏, 杨燕, 薛剑波. 低磷胁迫对晒红烟内源激素和根系活力的影响. 中国农学通报, 2005, 21(6) 227-227.
[39]  Gauthier D A, Turpin D H. Interactions between inorganic phosphate (Pi) assimilation, photosynthesis and respiration in the Pi-limited green alga Selenastrum minutum. Plant Cell and Environment, 1997, 20(1): 12-24.
[40]  Brahim M B, Loustau D, Gaudillere J P, et al. Effects of phosphate deficiency on photosynthesis and accumulation of starch and soluble sugars in 1-year-old seedlings of maritime pine (Pinus pinaster Ait). Annales des Sciences Forestieres, 1996, 53(4): 801-810.
[41]  李春俭. 植物对缺磷的适应性反应及其意义. 世界农业, 1999, 7: 35.
[42]  Lipton D S, Blanchar R W, Blevins D G. Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. Seedlings. Plant Physiology, 1987, 85(2): 315-317.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133