全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2012 

不同土壤水分条件下硅对坪用高羊茅种子出苗及生物学特性的影响

, PP. 199-205

Keywords: 高羊茅,土壤含水量,添加硅,种子出苗,生长

Full-Text   Cite this paper   Add to My Lib

Abstract:

水肥耦合不仅可以维持草坪草的正常生长,而且可以减少一定的灌溉量。采用盆栽试验研究了不同土壤条件下硅对坪用高羊茅种子出苗及生长的影响。结果表明,不添加硅时,高羊茅种子适宜出苗时的土壤含水量应为饱和含水量的45%~60%,植株生长适宜的土壤含水量应为饱和含水量的75%以上;当土壤含水量大于或等于饱和含水量的60%时,添加硅不仅能够提前坪用高羊茅种子的初始出苗时间,缩短集中出苗时期,提高出苗率,而且能够显著促进高羊茅的株高和叶长生长,增加地上和地下生物量(P<0.05),而当土壤含水量小于或者等于饱和含水量的45%时,添加硅对高羊茅种子出苗和生长发育没有明显影响,说明添加硅对坪用高羊茅生长的有益作用受土壤含水量的约束;土壤含水量为饱和含水量的60%时,添加硅处理中植株的分蘖数、株高、叶长和生物量与对照处理中土壤含水量为饱和含水量的75%时植株的分蘖数、株高、叶长和生物量差异不显著,说明添加硅能降低高羊茅植株正常生长所需的土壤含水量,有利于节约灌溉量。

References

[1]  邵麟惠, 李庆旭, 刘自学, 等. 北京地区57 个冷季型禾草草坪品种的生态适应性评价.草业科学, 2010, 27(8): 69-75.
[2]  杜建雄, 侯向阳, 刘金荣. 草地早熟禾对干旱及旱后复水的生理响应研究. 草业学报, 2010, 19(2): 31-38. 浏览
[3]  王艳, 李建龙, 余醉, 等.信号分子H2O2调节抗氧化系统提高高羊茅耐热性研究.草业学报, 2010, 19(1): 89-94. 浏览
[4]  刘慧霞, 郭正刚, 郭兴华, 等. 不同土壤水分条件下硅对紫花苜蓿水分利用效率及产量构成要素的影响.生态学报, 2009, 29(6): 3075-3080.
[5]  Ko J, Piccinni G. Characterizing leaf gas exchange responses of cotton to full and limited irrigation conditions. Field Crops Research, 2009, 112: 77-89.
[6]  Liu W Z, Zhang X C. Optimizing water and fertilizer input using an elasticity index: A case study with maize in the loess plateau of China. Field Crops Research, 2007, 100: 302-310.
[7]  Pearce I S K, Wal R V. Interpreting nitrogen pollution thresholds for sensitive habitats: The importance of concentration versus dose. Environmental Pollution, 2008, 152: 253-256.
[8]  Currie H A, Perry C C. Silica in plants: biological, biochemical and chemical studies. Annals of Botany, 2007, 100: 1383-1389.
[9]  Epstein E, Bloom A J. Mineral Nutrition of Plants: Principles and Perspectives (second ed). Sunderland, MA: Sinauer, 2005.
[10]  Liang Y C, Sun W C, Zhu Y G, et al. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 2007, 147: 422-428.
[11]  Shen X F, Zhou Y Y, Duan L S, et al. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. Journal of Plant Physiology, 2010, 167: 1248-1252.
[12]  Gong H J, Zhu X Y, Chen K M, et al. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 2005, 169: 313-321.
[13]  Agarie S, Uchida H, Qgata W, et al. Effect of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). Japanese Journal of Crop Science, 1998, 1(2): 89-95.
[14]  Gao X, Zou C, Wang L, et al. Silicon improves water use efficiency in maize plants. Journal of Plant Nutrition, 2004, 27: 1457-1470.
[15]  刘慧霞, 郭兴华, 郭正刚. 盐生境下硅对坪用高羊茅生物学特性的影响.生态学报, 2011, 31(23): 7039-7046.
[16]  Dakora F D, Nelwamonda A. Silicon nutrition promotes root growth and tissue mechanical strength in symbiotic cowpea. Functional Plant Biology, 2003, 30: 947-953.
[17]  Fortmeier R, Shubert S. Salt tolerance of maize (Zea mays L.) the role of sodium exclusion. Plant, Cell and Environment, 1995, 18: 1041-1047.
[18]  李芳, 邓裕, 洪丽芸. 水分胁迫下保水剂对高羊茅水分利用效果的作用.草业科学, 2009, 25(12): 123-128.
[19]  Sistani K R, Savant N K, Reddy K C. Effect of rice hull ash silicon on rice seedling growth. Journal of Plant Nutrition, 1997, 20: 195-201.
[20]  Savant N K, Korndorfer G H, Datnoff L E, et al. Silicon nutrition and sugarcane production: A review. Journal of Plant Nutrition, 1999, 22: 1853-1903.
[21]  Lux A, Luxova M, Abe J, et al. Silicification of bamboo (Phyllostachys heterocyla) root and leaf. Plant and Soil, 2003, 255: 85-91.
[22]  DeBakker N V J, Hemminga M A, Soelen J V. The relationship between silicon availability, and growth and silicon concentration of the salt marsh halophyte Spartina anglia. Plant and Soil, 1999, 215: 19-27.
[23]  马成仓, 李清芳, 束良佐, 等. 硅对玉米种子萌发和幼苗生长作用的机制初探. 作物学报, 2002, 28(5): 665-669.
[24]  李清芳, 马成仓, 李韩平, 等. 土壤有效硅对大豆生长发育和生理功能的影响. 应用生态学报, 2004, 15(1): 73-76.
[25]  刘慧霞, 申晓蓉, 郭正刚. 硅对紫花苜蓿种子萌发及幼苗生长发育的影响. 草业学报, 2011, 20(1): 155-160. 浏览

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133