全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2013 

高原鼠兔洞系特征及功能研究

DOI: 10.11686/cyxb20130625, PP. 198-204

Keywords: 高原鼠兔,洞系,建筑特点,适应性对策

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过在甘南玛曲900个洞口的实地调查,对高原鼠兔的洞系特征(洞口数量、位置、朝向、格局,洞道结构等)进行了系统研究。结果表明,高原鼠兔不同洞口朝向间的洞口数存在显著差异,其中全阴、半阴、全阳间的差异极显著;洞口直径与洞口朝向无相关性;洞口斜度≤55°的洞口主要集中在SW、SE和S3个方向,占洞口总数的48.6%,洞口斜度>55°的洞口主要集中在NW、NE和N3个方向,占洞口总数的52.1%;S向和偏S向的洞口温度显著高于N向和偏N向的洞口,W向和偏W向洞口温度普遍高于E向和偏E向洞口,前者最高温差可达13.2℃,后者最高温差为6.0℃。由上述可见,高原鼠兔的洞系建筑特点是对高原环境的一种适应性选择,除了常规意义上的栖居和避险等基本功能而外,还兼顾了洞内温度、对流和抵御寒风的利弊权衡。

References

[1]  Smith A T, Foggin J M. The plateau pika is a keystone species for biodiversity on the Tibetan Plateau. Animal Conservation, 1999, 2: 235-240.
[2]  Begall S, Gallardo M H. Spalacopus cyanus (Rodentia: Octodontidae): an extremist in tunnel constructing and food storing among subterranean mammals. Journal of Zoology, 2000, 251: 53-60.
[3]  Vleck D. Burrow structure and foraging costs in the fossorial rodent,Thomomys bottae. Oecologia, 1981, 49: 391-396.
[4]  Saundersa G, Cooke B, McColl K, et al. Modern approaches for the biological control of vertebrate pests: An Australian perspective. Biological Control, 2010, 52(3): 288-295.
[5]  Lai C H, Smith A T. Keystone status of plateau pikas (Ochotona curzoniae): effect of control on biodiversity of native birds. Biodiversity and Conservation, 2003, 12: 1901-1912.
[6]  施大钊, 钟文勤. 2000年我国草原鼠害发生状况及防治对策. 草地学报, 2001, 9(4): 248-252.
[7]  王兴堂, 花立民, 苏军虎, 等. 高原鼠兔的经济损害水平及防治指标研究.草业学报, 2009, 18(6): 198-203. 浏览
[8]  施银柱. 草场植被影响高原鼠兔密度的探讨.兽类学报, 1983, 3(2): 181-187.
[9]  张卫国, 丁连生, 韩天虎. 降水对高原鼠兔种群消长的影响.草业科学, 1999, 16(6): 20-22.
[10]  张卫国, 刘蓉, 江小雷. 风险性声讯信号对高原鼠兔行为模式的影响. 草地学报, 2010, (1): 115-120.
[11]  边疆辉, 刘季科. 相关风险因子对高原鼠兔摄食行为的影响. 兽类学报, 2001, 21(3): 41-52.
[12]  张永超, 牛得草, 韩潼, 等. 补播对高寒草甸生产力和植物多样性的影响. 草业学报, 2012, 21(2): 305-309. 浏览
[13]  文淑均, 张世挺, 李伟, 等. 青藏高原东缘典型草甸与沼泽化草甸中种子雨的差异.草业学报, 2012, 21(2): 256-263. 浏览
[14]  Luna F C, Antinuchi C D. Effect of tunnel inclination on digging energetics in the tuco-tuco, Ctenomys talarum (Rodentia: Ctenomyidae). Naturwissenschaften, 2007, 94: 100-106.
[15]  Lovegrove B G. The cost of burrowing by the social mole rats (Bathyergidae) Cryptomys damarensis and Heterocephalus glaber: The role of soil moisture. Physiological Zoology, 1989, 62(2): 449-469.
[16]  Vibe-Petersen S, Leirs H, de Bruyn L. Effects of predation and dispersal on Mastomys natalensis population dynamics in Tanzanian maize fields. Journal of Animal Ecology, 2006, 75: 213-220.
[17]  Le Comber S C, Eabloom E W, Romanach S S. Burrow fractal dimension and foraging success in subterranean rodents: a simulation. Behavioral Ecology, 2005, 11: 188-194.
[18]  Wang J M, Zhang Y M, Wang D H. Seasonal thermogenesis and body mass regulation in plateau pikas (Ochotona curzoniae). Oecologia, 2006, 149: 373-382.
[19]  Roci’O Torres M, Borghi C E, Giannonii S M. et al. Portal orientation and architecture of burrows in tympanoctomys barrerae (Rodentia, Octodontidae). Journal of Mammalogy, 2003, 84(2): 541-546.
[20]  umbera R, Mazoch V, Patzenhauerová H, et al. Burrow architecture, family composition and habitat characteristics of the largest social African mole-rat: the giant mole-rat constructs really giant burrow systems. Acta Theriologica, 2012, 57(2): 121-130.
[21]  Thomas H G, Bateman P W, Scantlebury M, et al. Season but not sex influences burrow length and complexity in the non-sexually dimorphic solitary Cape mole-rat (Rodentia: Bathyergidae).Journal of Zoology, 2012, 288(3): 1-8.
[22]  Rosi M I, Cona M I, Videla F, et al. Architecture of Ctenomys mendocinus (Rodentia) burrows from two habitats differing in abundance and complexity of vegetation. Acta Theriologica, 2000, 45(4): 491-505.
[23]  Edelman A J. Kangaroo rats remodel burrows in response to seasonal changes in environmental conditions. Ethology, 2011, 117(5): 430-439.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133