全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2013 

休牧对贝加尔针茅草原土壤微生物群落功能多样性的影响

DOI: 10.11686/cyxb20130603, PP. 21-30

Keywords: 休牧,土壤微生物群落,功能多样性,土壤微生物量,Biolog-ECO

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用Biolog-Eco微平板技术和氯仿熏蒸浸提法,以自由放牧地(zerorestgrazing,RG0)为对照,研究了休牧不同年限(RG3a、RG6a和RG9a)贝加尔针茅草原土壤微生物群落功能多样性及土壤微生物量的变化。结果表明,休牧后贝加尔针茅草原土壤微生物群落代谢活性显著升高。反映土壤微生物活性的平均颜色变化率(AWCD)呈以下变化趋势:RG6a>RG9a>RG3a>RG0。RG6a和RG9a样地AWCD值差异不显著(P>0.05),但均显著高于RG0样地(P<0.05),RG3a与RG0样地差异不显著(P>0.05)。休牧不同年限贝加尔针茅草原土壤微生物群落Shannon-Wiener物种丰富度指数(H)、Shannon-Wiener物种均匀度指数(E)和Simpson优势度指数(D)均为RG9a最高,其中RG9a样地H值与其他样地差异显著(P<0.05);不同处理E值差异不显著(P>0.05),RG9a样地D值与RG0差异显著(P<0.05)。主成分分析结果表明,RG0,RG3a和RG6a样地土壤微生物群落碳源利用方式及代谢功能相似,而RG9a样地土壤微生物群落具有不同的碳源利用方式和代谢功能。对不同碳源的分析结果表明,糖类、氨基酸类、脂类为土壤微生物利用的主要碳源。随休牧年限的增加,土壤微生物量呈增加趋势。RG9a土壤微生物量碳、微生物量氮(soilmicrobialbiomassC,N)含量均最高,分别为590.20和72.86mg/kg。相关分析表明,AWCD值与土壤微生物H值呈显著正相关(P<0.05),与D值呈极显著正相关(P<0.01);H值与D值呈极显著正相关(P<0.01)。H值、D值均与土壤微生物量碳(SMBC)呈显著正相关(P<0.05);H值与土壤微生物量氮(SMBN)呈显著正相关(P<0.05)。由此可知,休牧使草原土壤微生物代谢功能增强,土壤微生物繁殖快、数量大,从而促进土壤微生物量碳、氮含量的增加。

References

[1]  汪诗平. 天然草原持续利用理论和实践的困惑—兼论中国草业发展战略. 草地学报, 2006, 14(2): 188-192.
[2]  Clark F E, Paul E A. The microflora of grassland. Advances in Agronomy, 1970, 22: 375-435.
[3]  Grayston S J, Prescott C E. Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biology and Biochemistry, 2005, 37(6): 1157-1167.
[4]  Insam H, Hutchinson T C, Reber H H. Effects of heavy metal stress on the metabolic quotient of the soil microflora. Soil Biology and Biochemistry, 1996, 28: 691-694.
[5]  何振立. 土壤微生物量及其在养分循环和环境质量评价中的意义. 土壤, 1997, 29(2): 837-842.
[6]  张海芳, 李刚, 宋晓龙, 等. 内蒙古贝加尔针茅草原不同利用方式土壤微生物功能多样性. 生态学杂志, 2012, 31(5): 1143-1149.
[7]  赵帅, 张静妮, 赖欣, 等. 放牧与围栏内蒙古针茅草原土壤微生物生物量碳、氮变化及微生物群落结构PLFA分析. 农业环境科学学报, 2011, 30(6): 1126-1134.
[8]  朱立博, 曾昭海, 赵宝平, 等. 春季休牧对草地植被的影响. 草地学报, 2008, 16(3): 278-282.
[9]  Uytvanck J V, Maes D, Vandenhaute D, et al. Restoration of wood pasture on former agricultural land: The importance of safe sites and time gaps before grazing for tree seedlings. Biological Conservation, 2008, 141(1): 78-88.
[10]  曹文侠, 张德罡, 徐长林, 等. 杜鹃灌丛草地响应休牧的植被特征变化. 中国草地学报, 2008, 30(6): 94-98.
[11]  殷振华, 毕玉芬, 李世玉. 休牧对云南退化山地草甸草群结构的影响. 草地学报, 2008, 16(6): 630-635.
[12]  Grove J A, Kautola H, Javadpour S, et al. Assessment of changes in the microorganism community in a biofilter. Biochemical Engineering, 2004, 18(2): 111-114.
[13]  Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole carbon source utilization. Applied Environmental Microbiology, 1991, 57(8): 2351-2359.
[14]  Schutter M E, Dick R P. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates. Soil Biology and Biochemistry, 2001, 33(1): 1481-1491.
[15]  时鹏, 高强, 王淑平, 等. 玉米及其施肥对土壤微生物群落功能多样性的影响. 生态学报, 2010, 30(22): 6173-6182.
[16]  Harch B D, Correll R L, Meech W, et al. Using the Gini coefficient with Biolog substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities. Journal of Microbiological Methods, 1997, 30(1): 91-101.
[17]  Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707.
[18]  张燕燕, 曲来叶, 陈利顶. Biolog Eco Plate~TM实验信息提取方法改进. 微生物学通报, 2009, 36(7): 1083-1091.
[19]  Paul E A, Ladd J N. Soil Biochemistry. New York: Marcel Dekker, 1981: 415-471.
[20]  Gil-Sotres F, Trasar-Cepeda C, Leirós M C, et al. Different approaches to evaluating soil quality using biochemical properties. Soil Biology and Biochemistry, 2005, 37(5): 877-887.
[21]  罗希茜, 郝晓晖, 陈涛, 等. 长期不同施肥对稻田土壤微生物群落功能多样性的影响. 生态学报, 2009, 29(2): 740-748.
[22]  Preston-Mafham J, Boddy L, Randerson P F. Analysis of microbial community functional diversity using sole-carbon-source utilization profiles-a critique. FEMS Microbiology Ecology, 2002, 42(1): 1-14.
[23]  孔维栋, 刘可星, 廖宗文, 等. 不同腐熟程度有机物料对土壤微生物群落功能多样性的影响. 生态学报, 2005, 25(9): 2291-2296.
[24]  杨永华, 姚健, 华晓梅. 农药污染对土壤微生物群落功能多样性的影响. 微生物学杂志, 2000, 20(2): 23-25.
[25]  侯晓杰, 汪景宽, 李世鹏. 不同施肥处理与地膜覆盖对土壤微生物群落功能多样性的影响. 生态学报, 2007, 27(2): 655-661.
[26]  曹成有, 蒋德明, 阿拉木萨, 等. 小叶锦鸡儿人工固沙区植被恢复生态过程的研究. 应用生态学报, 2000, 10(3): 349-354.
[27]  Ladygina N, Hedlund K. Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biology and Biochemistry, 2010, 42(2): 162-168.
[28]  孟庆杰, 许艳丽, 李春杰, 等. 不同植被覆盖对黑土微生物功能多样性的影响. 生态学杂志, 2008, 27(7): 1134-1140.
[29]  Rodriguez-Loinaz G, Onaindia M, Amezaga I, et al. Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests. Soil Biology and Biochemistry, 2008, 40(1): 49-60.
[30]  李鹏, 李占斌, 澹台湛. 黄土高原退耕草地植被根系动态分布特征. 应用生态学报, 2005, 16(5): 849-853.
[31]  曹成有, 姚金冬, 韩晓姝, 等. 科尔沁沙地小叶锦鸡儿固沙群落土壤微生物功能多样性. 应用生态学报, 2011, 22(9): 2309-2315.
[32]  Pengthamkeerati P, Motavalli P P, Kremer R J. Soil microbial activity and functional diversity changed by compaction, poultry litter and cropping in a claypan soil. Applied Soil Ecology, 2011, 48(1): 71-80.
[33]  Yu S, He Z L, Huang C Y. Advances in the research of soil microorganisms and their mediated processes under heavy metal stress, Chinese Appllied Ecology, 2003, 14(4): 618-622.
[34]  刘秉儒. 贺兰山东坡典型植物群落土壤微生物量碳、氮沿海拔梯度的变化特征. 生态环境学报, 2010, 19(4): 883-888.
[35]  任佐华, 张于光, 李迪强, 等. 三江源地区高寒草原土壤微生物活性和微生物量. 生态学报, 2011, 31(11): 3232-3238.
[36]  文都日乐, 李刚, 张静妮, 等. 呼伦贝尔不同草地类型土壤微生物量及土壤酶活性研究. 草业学报, 2010, 19(5): 94-102.
[37]  张地, 张育新, 曲来叶, 等. 坡位对东灵山辽东栎林土壤微生物量的影响. 生态学报, 2012, 32(20): 6412-6421.
[38]  武建双, 李晓佳, 沈振西, 等. 藏北高寒草地样带物种多样性沿降水梯度的分布格局. 草业学报, 2012, 21(3): 17-25.
[39]  Smith J L, Paul E A. The significance of soil microbial biomass estimations. Bollag J M, Stotzky G. Soil Biochemistry. New York: Marcel Dekker, INC, 1991: 359-396.
[40]  单贵莲, 初晓辉, 田青松, 等. 典型草原恢复演替过程中土壤性状动态变化研究. 草业学报, 2012, 21(4): 1-9.
[41]  王蕙, 王辉, 黄蓉, 等. 不同封育管理对沙质草地土壤与植被特征的影响. 草业学报, 2012, 21(6): 15-22.
[42]  牛佳, 周小奇, 蒋娜, 等. 若尔盖高寒湿地干湿土壤条件下微生物群落结构特征. 生态学报, 2011, 31(2): 474-482.
[43]  O’Donnell A G, Seasman M, Macrae A, et al. Plants and fertilizers as drivers of changes in microbial community structure and function in soils. Plant and Soil, 2001, 232(1-2): 135-145.
[44]  Staddon W J, Trevors J T, Duchesne L C, et al. Soil microbial diversity and community structure across a climatic gradient in western Canada. Biodiversity and Conservation, 1998, 7(8): 1081-1092.
[45]  邵玉琴, 敖晓兰, 宋国宝, 等. 皇甫川流域退化草地和恢复草地土壤微生物生物量的研究. 生态学杂志, 2005, 24(5): 578-580.
[46]  顾爱星, 范燕敏, 武红旗, 等. 天山北坡退化草地土壤环境与微生物数量的关系. 草业学报, 2010, 19(2): 116-123.
[47]  Wardle D A. Controls of temporal variability of the soil microbial biomass: a global-scale synthesis. Soil Biology and Biochemistry, 1998, 30(13): 1627-1637.
[48]  杨殿林, 韩国栋, 胡跃高, 等. 放牧对贝加尔针茅草原群落植物多样性和生产力的影响. 生态学杂志, 2006, 25(12): 1470-1475.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133