全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

加铺层对旧水泥路面抗裂作用的理论分析

DOI: 10.3969/j.issn.1674-0696.2013.05.10, PP. 943-949

Keywords: 水泥混凝土路面,沥青加铺层,应力强度因子,断裂力学,傅立叶变换,位错密度函数,奇异积分方程,cementconcretepavement,asphaltoverlay,stressintensityfactor,fracturemechanics,Fouriertransform,dislocationdensityfunction,singularintegralequation

Full-Text   Cite this paper   Add to My Lib

Abstract:

:?为分析加铺层对含裂纹水泥混凝土路面的抗裂作用,应用断裂力学方法建立了理论分析模型。将水泥混凝土路面视为Winkler地基上的弹性板,采用傅立叶积分变换,并通过引入位错密度函数建立了奇异积分方程,再应用Lobatto-Chebyshev法求解奇异积分方程,得到裂纹尖端应力强度因子的表达式及数值解。以实际的路面为例,对比有无加铺层时裂纹尖端的应力强度因子值,结果显示:加铺层使裂纹尖端应力强度因子减小,加铺层的厚度和弹性模量都是影响加铺效果的主要因素。

References

[1]  钟阳,程培风,苏跃宏,等. 路基路面工程[M]. 北京: 科学出版社,2005.
[2]  Zhong Yang,Cheng Peifeng,Su Yuehong,et al. Subgrade and Pavement Engineering [M]. Beijing: Science Press,2005.
[3]  马银华,易志坚,杨庆国. 结合式水泥砼路面加铺层的力学性能分析[J]. 重庆交通学院学报,2005,24( 2) : 42-45.
[4]  Ma Yinhua,Yi Zhijian,Yang Qingguo. Analysis about the mechanical properties of combined-form concrete pavement overlays [J].Journal of Chongqing Jiaotong University,2005,24( 2) : 42-45.
[5]  凌天清,赖辉,韦刚,等. 刚性基层长寿命沥青路面抗反射裂缝力学分析[J]. 重庆交通大学学报: 自然科学版,2010,29( 5) :714-717.
[6]  Ling Tianqing,Lai Hui,Wei Gang,et al. Mechanic analysis on defending reflective crack of perpetual asphalt pavement with rigid base[J]. Journal of Chongqing Jiaotong University: Natural Science,2010,29( 5) : 714-717.
[7]  丁遂栋. 断裂力学[M]. 北京: 机械工业出版社,1997.
[8]  Ding Suidong. Fracture Mechanics [M]. Beijing: China Machine Press,1997.
[9]  张行. 断裂力学中应力强度因子的解法[M]. 北京: 国防工业出版社,1992.
[10]  Zhang Xing. Solution of Stress Intensity Factor in Fracture Mechanics[M]. Beijing: National Defense Industry Press,1992.
[11]  库贵华,张少雄. 断裂力学教程[M]. 西安: 西北工业大学出版社, 1994.
[12]  Ku Guihua,Zhang Shaoxiong. Fracture Mechanics [M]. Xi’an: Northwestern Polytechnical University Press,1994.
[13]  Zak A R,Williams M L. Crack point stress singularities at a bi-material interface [J]. Journal of Applied Mechanics,1963,30: 142-143.
[14]  Korniets S D,Kaminskii A A. Stress around a crack in an elastic plate weakened by two holes[J]. International Applied Mechanics,1987,23( 11) : 1072-1077.
[15]  Vroonhoven J C W. Stress intensity factors for curvilinear cracks loaded under anti-plane strain ( mode III) conditions [J]. International Journal of Fracture,1993,70( 1) : 1-18.
[16]  李永东,贾斌,张男,等. 功能梯度材料有限宽板的反平面断裂问题研究[J]. 应用数学和力学,2006,27( 6) : 683-689.
[17]  Li Yongdong,Jia Bin,Zhang Nan,et al. Anti-plane fracture analysis of a functionally gradient material infinite strip with finite width[J]. Applied Mathematics and Mechanics,2006,27 ( 6) : 683-689.
[18]  Zhao Huaqing. Fracture and Fatigue Analysis of Functionally Graded and Homogeneous Materials Using Singular Integral Equation Approach [D]. Baltimore: Johns Hopkins University,1998.
[19]  Kadioˇglu S,Daˇg S,Yahsi S. Crack problem for a functionally graded layer on an elastic foundation[J]. International Journal of Fracture,1998,94: 63-77.
[20]  Erdogan F,Gupta G. The stress analysis of multi-layered composites with a flaw [J]. International Journal of Solids Structures,1971,7: 39-61.
[21]  Sei U,Tatsuya M. The surface crack problem for layered elastic medium with a functionally graded non-homogeneous interface[J]. Journal of Solid Mechanics and Material Engineering,2002,45( 3) : 371-378.
[22]  李永东. 断裂力学理论与应用[M]. 北京: 科学出版社,2000.
[23]  Li Yongdong. Theory and Application of Fracture Mechanics[M].Beijing: Science Press,2000.
[24]  林益,刘国钧,叶提芳,等. 复变函数与积分变换[M]. 武汉: 华中科技大学出版社, 2008.
[25]  Lin Yi,Liu Guojun,Ye Tifang,et al. Complex Function and Integral Transform[M]. Wuhan: Huazhong University of Science and Technology Press,2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133