[1] Matsuo T, Okamura K. Wear characteristic of general and superhard abrasive grains against various hard materials[J]. Cirp Annals-Manufacturing Technology, 1981, 30(1): 233-236.
[2]
[2] Ohbuchi Y, Matsuo T. Force and chip formation in single-grit orthogonal cutting with shaped CBN and diamond grains [J]. Annals of CIRP, 1991, 40(1): 327-329.
[3]
[3] Matsuo T, Toyoura S, Oshima E, et al. Effect of grain shape on cutting force in superabrasive single-grit tests[J]. Annals of CIRP, 1989, 38(1): 323-326.
[4]
[4] 冯宝富. 磨削速度对磨削机理诸方面影响的研究[D]. 沈阳:东北大学,2003.
[5]
[5] 霍凤伟. 硅片延性域磨削机理研究[D]. 大连:大连理工大学,2006.
[6]
[6] Klocke F. Modeling and simulation in grinding[M]. Duesseldorf: VDI-Verlag, 2003.
[7]
[7] Cooper W, Lavine A S. Grinding process size effect and kinematics numerical analysis[J]. Journal of Manufacturing Science and Engineering, 2000, 122(1): 59-69.
[9] Graham W, Voutsadopoulos C M. Fracture wear of grinding wheel[J]. Int J Mach Tool Des Res, 1978, 18(2): 95-103.
[10]
[10] 任敬心,华定安. 磨削原理[M]. 西安:西北工业大学出版社,1988.
[11]
[11] Gilormini P, Felder E. Theoretical experimental study of the ploughing of a rigid-plastic semi-infinite body by a rigid pyramidal indenter[J]. Wear, 1983, 88(2): 195-206.
[12]
[12] Kermouche G, Rech J, Hamdi H, et al. On the residual stress field induced by a scratching round abrasive grain[J]. Wear, 2010, 269(1-2): 86-92.