Devonshire A L, Heidari R, Bell K L, et al. Kinetic efficiency of mutant carboxylesterases implicated in organophosphate insecticide resistance. Pesticide Biochemistry and Physiology, 2003, 76(1): 1-13
[2]
Lo H R, Chao Y C. Rapid titer determination of baculovirus by quantitative real-time polymerase chain reaction. Biotechnology Progress, 2004, 20: 354-360
[3]
Vernick K D, Collins F H, Seeley D C, et al. The genetics and expression of an esterase locus in Anopheles gambiae. Biochemical Genetics, 1988, 26(5/6): 367-379
[4]
Heidari R, Devonshire A L, Campbell B E, et al. Hydrolysis of organophosphorus insecticides by in vitro modified carboxylesterase E3 from Lucilia cuprina. Insect Biochemistry and Molecular Biology, 2004, 34(4): 353-363
[5]
Srinivas R, Jayalakshmi S K, Sreeramulu K, et al. Purification and characterization of an esterase isozyme involved in hydrolysis of organophosphorus compounds from an insecticide resistant pest, Helicoverpa armigera (Lepidoptera: Noctuidae). Biochimica et Biophysica Acta, 2006, 1760: 310-317
[6]
Newcomb R D, Campbell P M, Ollis D L, et al. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(14): 7464-7468
[7]
Heidari R, Devonshire A L, Campbell B E, et al. Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis. Insect Biochemistry and Molecular Biology, 2005, 35(6): 597-609
[8]
Cui F, Lin Z, Wang H, et al. Two single mutations commonly cause qualitative change of nonspecific carboxylesterases in insects. Insect Biochemistry and Molecular Biology, 2011, 41(1): 1-8
[9]
Oakeshott J G, Claudianos C, Campbell P M, et al. Biochemical genetics and genomics of insect esterases. //Gilbert L I, Latrou K, Gill S S. Comprehensive molecular insect science-pharmacology. Oxford: Elsevier Pergamon, 2005
[10]
唐振华,毕强. 杀虫剂作用的分子行为.上海:上海远东出版社:2003
[11]
Farnsworth C A, Teese M G, Yuan G R, et al. Esterase-based metabolic resistance to insecticides in heliothine and spodopteran pests. Journal of Pesticide Science, 2010, 35(3): 275-289
[12]
Scott J G. Cytochromes P450 and insecticide resistance. Insect Biochemistry and Molecular Biology, 1999, 29: 757-777
[13]
Yang Y, Yue L, Chen S, et al. Functional expression of Helicoverpa armigera CYP9A12 and CYP9A14 in Saccharomyces cerevisiae. Pesticide Biochemistry and Physiology, 2008, 92(2): 101-105
[14]
Gunning R V, Moores G D, Devonshire A L. Esterases and esfenvalerate resistance in Australian Helicoverpa armigera (Hübner) Lepidoptera: Noctuidae. Pesticide Biochemistry and Physiology, 1996, 54(1): 12-23
Wu S, Yang Y, Yuan G, et al. Overexpressed esterases in a fenvalerate resistant strain of the cotton bollworm, Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 2011, 41(1): 14-21
Newcomb R D, Campbell P M, Russell R, et al. cDNA cloning, baculovirus-expression and kinetic properties of the esterase, E3, involved in organophosphorus resistance in Lucilia cuprina. Insect Biochemistry and Molecular Biology, 1997, 27(1): 15-25