Lu H T, Ouyang W M, and Huang C S. Inflammation, a key event in cancer development[J]. Mol Cancer Res, 2006, 4(4): 221.
[2]
Taube A, Schlich R, Sell H, et al. Inflammation and metabolic dysfunction: links to cardiovascular diseases[J]. Am J Physiol-Heart C, 2012, 302(11): H2148.
[3]
Okin D, Medzhitov R. Evolution of inflammatory diseases[J]. Curr Biol, 2012, 22(17): R733.
[4]
Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives[J].Trends Cell Biol, 2001, 11(9): 372.
[5]
Ghosh S, Hayden M S. New regulators of NF-κB in inflammation[J]. Nat Rev Immunol, 2008, 8(11): 837.
[6]
Rial N S, Choi K, Nguyen T, et al. Nuclear factor kappa B(NF-κB): a novel cause for diabetes, coronary artery disease and cancer initiation and promotion[J]. Med Hypotheses, 2012, 78(1): 29.
[7]
郭宗儒.药物分子设计的策略: 双靶标药物设计[J].药学学报,2009,44(3): 209.
[8]
中国药典.一部[S]. 2010:115.
[9]
卫琮玲,闫杏莲.地骨皮的镇痛作用[J].中草药,2000,31(9): 688.
[10]
Gao D, Li Q, Liu Z, et al. Hypoglycemic effects and mechanisms of action of Cortex Lycii Radicis on alloxan-induced diabetic mice[J]. Yakugaku Zasshi, 2007, 127(10): 1715.
[11]
Chan J Y W, Leung P C, Che C T, et al. Protective effects of an herbal formulation of Radix Astragali, Radix Codonopsis and Cortex Lycii on streptozotocin-induced apoptosis in pancreatic beta-cells: an implication for its treatment of diabetes Mellitus[J]. Phytother Res, 2008, 22(2): 190.
Funayama S, Yoshida K, Konno C, et al.Structure of kukoamine A, a hypotensive principle of Lycium chinense root barks1[J]. Tetrahedron Lett, 1980, 21(14): 1355.
[14]
Cho S H, Park E J, Kim E O, et al. Study on the hypochlolesterolemic and antioxidative effects of tyramine derivatives from the root bark of Lycium chinense Miller[J]. Nutr Res Pract, 2011, 5(5): 412.
Ye Z, Huang Q, Ni H X, et al. Cortex Lycii Radicis extracts improve insulin resistance and lipid metabolism in obese-diabetic rats[J]. Phytother Res, 2008, 22(12): 1665.
[17]
Potterat O. Goji(Lycium barbarum and L. chinense ): phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity[J]. Planta Med, 2010, 76(1): 7.
[18]
Zhao G, Hui Y, Rupprecht J K, et al. Additional bioactive compounds and trilobacin, a novel highly cytotoxic acetogenin, from the bark of Asimina triloba[J]. J Nat Prod, 1992, 55(3): 347.
[19]
King R R, Calhoun L A. Characterization of cross-linked hydroxycinnamic acid amides isolated from potato common scab lesions[J]. Phytochemistry, 2005, 66(20): 2468.
[20]
Lee D, Park G, Kim Y, et al. Anti-fungal effects of phenolic amides isolated from the root bark of Lycium chinense[J]. Biotechnol Lett, 2004, 26(14): 1125.
[21]
Vogl S, Atanasov A G, Binder M, et al. The herbal drug Melampyrum pratense L.(Koch): isolation and identification of its bioactive compounds targeting mediators of inflammation[J]. Evid Based Complement Alternat Med, 2013, doi.org/10.1155/2013/395316.
[22]
Georgiev L, Chochkova M, Totseva I, et al. Anti-tyrosinase, antioxidant and antimicrobial activities of hydroxycinnamoylamides[J]. Med Chem Res, 2013, 22(9): 4173.
[23]
Park J B, Schoene N. N-caffeoyltyramine arrests growth of U937 and Jurkat cells by inhibiting protein tyrosine phosphorylation and inducing caspase-3[J]. Cancer Lett, 2003, 202(2): 161.
[24]
Liu X, Luo J, Kong L. Phenylethyl cinnamides as potential α-glucosidase inhibitors from the roots of Solanum melongena[J]. Nat Prod Commun, 2011, 6(6): 851.
[25]
Han E H, Kim J Y, Kim H G, et al. Dihydro-N-caffeoyltyramine down-regulates cyclooxygenase-2 expression by inhibiting the activities of C/EBP and AP-1 transcription factors[J]. Food Chem Toxicol, 2010, 48(2): 579.
[26]
Al-Taweel A M, Perveen S, El-Shafae A M, et al. Bioactive phenolic amides from Celtis africana[J].Molecules, 2012, 17(3): 2675.
[27]
Moradi-Afrapoli F, Yassa N, Zimmermann S, et al. Cinnamoylphenethyl amides from Polygonum hyrcanicum possess anti-trypanosomal activity[J]. Nat Prod Commun, 2012, 7(6): 753.
[28]
Park J B. Effects of typheramide and alfrutamide found in Allium species on cyclooxygenases and lipoxygenases[J]. J Med Food, 2011, 14(3): 226.
[29]
Thangnipon W, Suwanna N, Kitiyanant N, et al. Protective role of N-trans-feruloyltyramine against β-amyloid peptide-induced neurotoxicity in rat cultured cortical neurons[J]. Neurosci Lett, 2012, 513(2): 229.
[30]
Zhang S Z, Yang X N, Coburn R A, et al. Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein[J]. Biochem Pharmacol, 2005, 70(4): 627.
[31]
Cheng S S, Liu J Y, Chang E H, et al. Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi[J]. Bioresource Technol, 2008, 99(11): 5145.
[32]
Gonzalez-Diaz H, Olazabal E, Santana L, et al. QSAR study of anticoccidial activity for diverse chemical compounds: prediction and experimental assay of trans-2-(2-nitrovinyl)furan[J]. Bioorgan Med Chem, 2007, 15(2): 962.
[33]
Xie L W, Ouyang Y C, Zou K, et al. Isolation and difference in anti-Staphylococcus aureus bioactivity of curvularin derivates from fungus Eupenicillium sp.[J]. Appl Biochem Biotech, 2009, 159(1): 284.