Kumar N, Mohandas C, Nambisan B, et al. Isolation of proline-based cyclic dipeptides from Bacillus sp. N strain associated with rhabitid entomopathogenic nematode and its antimicrobial properties [J]. World J Microb Biot, 2013, 29(2):355.
[6]
Zhang W, Wei S, Zhang J, et al. Antibacterial activity composition of the fermentation broth of Streptomyces djakartensis NW35 [J]. Molecules, 2013, 18(3):2763.
[7]
Chang C J. Carbon-13-proton longrange coupliugs of phenols. Hydrogen bonding and stereospecificity[J]. J Org Chem, 1976, 41(10):1881.
[8]
Moore B S, Walker K, Tornus I, et al. Biosynthetic studies of wcycloheptyl fatty acids in Alicyclobacillus cycloheptanicus formation of cycloheptan ecarbaxylic acid from phenylacetic acid[J]. J Org Chem, 1997, 62(7):2173.
[9]
Palomo S, Gonzalez I, de la Cruz M, et al. Sponge-derived Kocuria and Micrococcus spp. as sources of the new thiazolyl peptide antibiotic kocurin [J]. Mar Drugs, 2013, 11(4):1071.
[10]
Stierle A C, Cardellina J H, II, Singleton F L. A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis [J]. Experientia, 1988, 44(11/12):1021.
[11]
Fotso S, Zabriskie T M, Proteau P J, et al. Limazepines A-F, pyrrolo[1, 4]benzodiazepine antibiotics from an Indonesian Micrococcus sp. [J]. J Nat Prod, 2009, 72(4):690.
[12]
Stierle A A, Cardellina J H, II, Singleton F L. Benzothiazoles from a putative bacterial symbiont of the marine sponge Tedania ignis [J]. Tetrahedron Lett, 1991, 32(37):4847.
[13]
Eltamany Enas E, Ibrahim Amany K, Hassanean Hashim A, et al. New antibacterial xanthone from the marine sponge-derived Micrococcus sp. EG45 [J]. Bioorg Med Chem Lett, 2014, 24(21):4939.
[14]
Osawa A, Ishii Y, Sasamura N, et al. Characterization and antioxidative activities of rare C50 carotenoids, sarcinaxanthin, sarcinaxanthin monoglucoside, and sarcinaxanthin diglucoside, obtained from Micrococcus yunnanensis [J]. J Oleo Sci, 2010, 59(12):653.
[15]
Ibrahim A S S. Production of carotenoids by a newly isolated marine Micrococcus sp [J]. Biotechnology(Faisalabad, Pak), 2008, 7(3):469.
[16]
Yang S W, Cordell G A. Metabolism studies of indole derivatives using a staurosporine producer, Streptomyces staurosporeus [J].J Nat Prod, 1997, 60(1):44.
[17]
Kornsakulkarn J, Saepua S, Boonruangprapa T, et al. New β-carboline and indole alkaloids from Actinomycete Actinomadura sp. BCC 24717 [J]. Phytochem Lett, 2013, 6(3):491.
Pedras M S C, Sarma-Mamillapalle V K. Metabolism and metabolites of dithiocarbamates in the plant pathogenic fungus Leptosphaeria maculans [J]. J Agric Food Chem, 2012, 60(32):7792.
Sajeli Begum A, Basha S A, Raghavendra G, et al. Isolation and characterization of antimicrobial cyclic dipeptides from Pseudomonas fluorescens and their efficacy on sorghum grain mold fungi [J]. Chem Biodivers, 2014, 11(1):92.
De Rosa S, Mitova M, Tommonaro G. Marine bacteria associated with sponge as source of cyclic peptides [J]. Biomol Eng, 2003, 20(4/6):311.
[26]
Shigemori H, Tenma M, Shimazaki K, et al. Three new metabolites from the marine yeast Aureobasidium pullulans[J]. J Nat Prod, 1998, 61(5):696.
[27]
Musetti R, Polizzotto R, Vecchione A, et al. Antifungal activity of diketopiperazines extracted from Alternaria alternata against Plasmopara viticola:An ultrastructural study[J]. Micron, 2007, 38(6):643.
[28]
Furtado N A J C, Pupo M T, Carvalho I, et al. Diketopiperazines produced by an Aspergillus fumigatus Brazilian strain [J].J Braz Chem Soc, 2005, 16(6B):1448.
[29]
Adamczeski M, Reed A R, Crews P. Novel sponge-derived amino acids, 18. New and known diketopiperazines from the Caribbean sponge, Calyx cf. podatypa [J]. J Nat Prod, 1995, 58(2):201.
Mitova M, Tommonaro G, Hentschel U, et al. Exocellular cyclic dipeptides from a Ruegeria strain associated with cell cultures of Suberites domuncula [J]. Mar Biotechnol, 2004, 6(1):95.