Stalmach A, Steiling H, Williamson G, et al. Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy[J]. Arch Biochem Biophys, 2010, 501:98.
[4]
Lardeau A, Poquet L. Phenolic acid metabolites derived from coffee consumption are unlikely to cross the blood-brain barrier[J]. J Pharmaceut Biomed, 2013, 76:134.
[5]
Badenhorst C P, Erasmus E, van der Sluis R, et al. A new perspective on the importance of glycine conjugation in the metabolism of aromatic acids[J]. Drug Metab Rev, 2014, 46(3):343.
[6]
Stalmach A, Mullen W, Barron D, et al. Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans:identification of biomarkers of coffee consumption [J]. Drug Metab Dispos, 2009, 37:1749.
[7]
Azuma K, Ippoushi K, Nakayama M, et al. Absorption of chlorogenic acid and caffeic acid in rats after oral administration [J]. J Agric Food Chem, 2000, 48:5496.
[8]
Geoff W Plumb, Paul A Kroon, Mike Rhodes, et a1. Metabolism of chlorogenic acid by human plasma, liver, intestine and gut micreflora[J]. J Sci Food Agr, 1999, 79:390.
[9]
Gonthiera M P, Scalberta, Cheynierb V, et a1. Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal micmbiota in vitro[J]. Biomed Pharmacoth, 2006, 60:536.
[10]
Schreiber S, Bleich A, Pick C G. Venlafaxine and mirtazapine:different mechanisms of antidepressant action, common opioid-mediated antinociceptive effects-a possible opioid involvement in severe depression[J]. J Mol Neurosci, 2002,18(1/2):143.
[11]
Pathak L, Agrawal Y, Dhir A. Natural polyphenols in the management of major depression[J]. Expert Opin Investig Drugs, 2013, 22(7):863.
[12]
Parka S H, Sima Y B, Hanb P L, et al. Antidepressant-like effect of chlorogenic acid isolated from Artemisia capillaris Thunb[J]. Anim Cells Syst, 2012, 14(4):253.
[13]
Cropley V, Croft R, Silber B, et al. Does coffee enriched with chlorogenic acids improve mood and cognition after acute administration in healthy elderly a pilot study[J]. Psychopharmacology, 2012, 219:737.
[14]
Bouayed J, Rammal H, Dicko A, et al. Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects[J]. J Neurol Sci, 2007, 262:77.
[15]
Tsuji M, Miyagawa K, Takeuchi T, et al. Pharmacological characterization and mechanisms of the novel antidepressive- and/or anxiolytic-like substances identified from Perillae Herba[J]. Nihon Shinkei Seishin Yakurigaku Zasshi, 2008, 28(4):159.
[16]
Zeni Ana Lúcia B, Zomkowski Andréa Dias E, Maraschin M, et al. Involvement of PKA, CaMKII, PKC, MAPK/ERK and PI3K in the acute antidepressant-like effect of ferulic acid in the tail suspension test[J]. Pharmacol Biochem Behav, 2012, 103:181.
[17]
Zeni Ana Lúcia B, Zomkowski Andréa Dias E, Maraschin M, et al. Ferulic acid exerts antidepressant-like effect in the tail suspension test in mice:evidence for the involvement of the serotonergic system[J]. Eur J Pharmacol, 2012, 679:68.
[18]
Lee K, Lee J S, Jang H J, et al. Chlorogenic acid ameliorates brain damage and edema by inhibiting matrix metalloproteinase-2 and 9 in a rat model of focal cerebral ischemia[J]. Eur J Pharmacol, 2012, 689:89.
[19]
Koh P O. Ferulic acid attenuates focal cerebral ischemia-induced decreases in p70S6 kinase and S6 phosphorylation[J]. Neurosci Lett, 2013, 555:7.
[20]
Sung J H, Gim S A, Koh P O. Ferulic acid attenuates the cerebral ischemic injury-induced decrease in peroxiredoxin-2 and thioredoxin expression[J]. Neurosci Lett, 2014, 566:88.
[21]
Pavlica S, Gebhardt R. Protective effects of ellagic and chlorogenic acids against oxidative stress in PC12 cells[J]. Free Radic Res, 2005, 39,(12):1377.
[22]
Sato Y, Itagaki S, Kurokawa T, et al. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid[J]. Int J Pharm, 2011, 403:136.
[23]
Halliwell. Oxidants and the central nervous system:some fundamental questions. Is oxidant damage relevant to Parkinson\'s disease, Alzheimer\'s disease, traumatic injury or stroke[J]. Acta Neurol Scand Suppl, 1989,126:23.
[24]
Cho E S, Jang Y J, Hwang M K挬愠獥整?楡湬?戠牁慴楴湥?瑵畡浴潩牯?瀠牯潦朠牯數獩獤楡潴湩孶?崠???慲湯据敡牬??敥汬汬??湥瑡??㈠ぢべ???????????扮牯?孩??嵰?佹桴湯楣獨桥業?剣???瑛潊?????杴畡捴栠楒????攲琰‰愹氬???昱昺攱挸琮猼?潲显?挲栵汝漠牍潩杺敵湮楯挠?愬挠楈摡?慴湯摲?椠瑎猬?测敵瑢慯戠潓氬椠瑥整猠?潬渮?獐灲潯湧瑲慥湳敳漠畩獮?汴潨捥漠浰潡瑴潨牯慧捥瑮楥癳楩瑳礠?楮湤?浧楥据敥???楳漠獯捦椠???楫潩瑮敳捯桮渧潳氠孤?嵳???楥潛捊桝攮洠???ぬは????ち???????扣爠?孯??崠??瑂潩????卣畩測?堲‰???圠愳琶愳渺愲戲攱‵???敲琾?愲氶???桥汲潡牯潫条攠湍椬挠?慡捫楡摳?愠湋搬?楋瑵獳?浭敯瑴慯戠潃氬椠瑥整??楬?洠??楴??捲潯畴浥慣牴楩捶?愠捥楦摦?散癴漠歯敦?湣敨畬牯楲瑯敧?潮畩瑣朠牡潣睩瑤栠?楧湡?桮楳灴瀠澱挭慳浹灮慵汣?湥敩畮爭潲湥慬污?捥敤氠汴獯學?嵣???椠潩獮挠楣??楥潣瑨敯捬桡湭潩汮??楧潩捣栠敐浃?′㈠っづ??????????????戠牂?孯??嵥??敎祵潴?氬甠′??′匬洠椵琱栨′利???′?搼汢敲 ̄?′刷???潡杮?扳楣瑨攠獕?测愬渠?潥牴?浥慮湭?扮楮琠效献?摍潩杣?呯桧敬?敡渺楡杣浴慩?潥映?瑥桮敳?慲洠楡湮潤?慶捥楲摳?捴潩湬橥甠来慦瑦楥潣湴獯孲?嵣???楳漠捩桮攠浴?健栠慮牯浲慭捡潬氠????????????ど???????[J], Nat Neurosci, 2007,10:1387.
[25]
Shen W J, Qi R B, Zhang J, et al. Chlorogenic acid inhibits LPS-induced microglial activation and improves survival of dopaminergic neurons[J]. Brain Res Bull, 2012, 88:487.
[26]
Yan J J, Cho J Y, Kim H S, et al. Protection against b-amyloid peptide toxicity in vivo with long-term administration of ferulic acid[J]. Brit J Pharmacol, 2001, 133:89.
[27]
Mamiya T, Kise M, Morikawa K. Ferulic acid attenuated cognitive deficits and increase in carbonyl proteins induced by buthionine-sulfoximine in mice[J]. Neurosci Lett, 2008, 430:115.
[28]
Kwon S H, Lee H K, Kim J A, et al. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice[J]. Eur J Pharmacol, 2010, 649:210.
[29]
Oboh G, Agunloye O M, Akinyemi A J, et al. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer\'s disease and some pro-oxidant induced oxidative stress in rats\' brain-in vitro[J]. Neurochem Res, 2013, 38:413.
[30]
Fang L, Kraus B, Lehmann J, et al. Design and synthesis of tacrine-ferulic acid hybridsas multi-potent anti-Alzheimer drug candidates[J]. Bioorg Med Chem Lett, 2008,18:2905.
[31]
Belkaid A, Currie J C, Desgagnés J, et al. The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose-6-phosphate translo