全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2013 

肌醇磷脂信号组分调节花粉发育和花粉管生长的研究进展

DOI: 10.3724/SP.J.1259.2013.00210, PP. 210-218

Keywords: 肌醇磷脂信号系统,磷脂酶C,花粉发育,花粉管生长

Full-Text   Cite this paper   Add to My Lib

Abstract:

?肌醇磷脂信号系统以肌醇磷脂代谢循环为基础,由多种磷酸磷脂酰肌醇分子和多磷酸肌醇分子及催化代谢的磷脂酶、激酶组成。该信号系统参与调节动、植物细胞生长发育及应答环境刺激等多种生理过程。花粉发育和花粉管的生长是植物有性生殖的基础,肌醇磷脂信号系统中多种组分参与其生理过程的调节。该文综述了植物肌醇磷脂信号系统中各组分的相互关系,以及相关组分调节花粉发育和花粉管生长生理过程的研究进展。

References

[1]  吕世友, 李彦舫, 陈祖铿, 林金星 (2001). 花粉发育的研究进展.植物学通报18, 340-346.
[2]  马力耕, 徐小冬, 崔素娟, 孙大业 (1998). 肌醇磷脂信号途径参与胞外钙调素启动花粉萌发和花粉管伸长. 植物生理学报, 24, 196-200.
[3]  王昕, 崔素娟, 马力耕, 孙大业 (2000). PLC-IP3 信号途径参与花粉管伸长调控的显微注射实验. 植物学报, 42, 697-702.
[4]  孙大业, 崔素娟, 孙颖 (2010). 细胞信号转导(第4版). 北京, 科学出版社. pp. 147-162.
[5]  Berridge MJ (1993). Inositol trisphosphate and calcium signalling. Nature, 361, 315-325.
[6]  Camacho L, Malhó R (2003). Endo-Exocytosis in the pollen tube apex is differentially regulated by [Ca2+] c and GTPases. J. Exptl. Bot. 54, 83-92.
[7]  Ischebeck T, Stenzel I, Hempel F, Jin X, Mosblech A, Heilmann I (2011). Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. Plant J. 65, 453-68.
[8]  Kim HJ, Ok SH, Bahn SC, Jang J, Oh SA, Park SK, Twell D, Ryu SB, Shin JS (2011). Endoplasmic reticulum- and Golgi-localized phospholipase A2 plays critical roles in Arabidopsis pollen development and germination. Plant Cell. 23, 94-110.
[9]  Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua NH (1999) Rac homologues and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol. 145,317–330.
[10]  Lee CB, Kim S, McClure B (2009) A pollen protein, NaPCCP, that binds pistil arabinogalactan proteins also binds phosphatidylinositol 3-phosphate and associates with the pollen tube endomembrane system. Plant Physiol. 149,791–802.
[11]  Lee Y, Kim ES, Choi Y, Hwang I, Staiger CJ, Chung YY, Lee Y (2008). The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development. Plant Physiol. 147, 1886-97.
[12]  Ma L, Xu X, Cui S, Sun D (1999). The presence of a heterotrimeric G protein and its role in signal transduction of extracelluar calmodulin in pollen germination and tube growth. Plant Cell, 11, 351-1363.
[13]  Meijer HJG, Munnik T (2003) Phospholipid-based signaling in plants. Ann Rev Plant Biol 54,265–306.
[14]  Mizushima N (2007). Autophagy, process and function. Genes Dev. 21, 2861-73.
[15]  Pan YY, Wang X, Ma LG, Sun DY (2005). Characterization of Phosphatidylinositol-Specific Phospholipase C (PI-PLC) from Lilium daviddi Pollen. Plant Cell Physiol. 46, 1657-1665.
[16]  Parre E, Ghars MA, Leprince AS, Thiery L, Lefebvre D, Bordenave M, Richard L, Mazars C, Abdelly C, Savouré A (2007). Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis. Plant Physiol, 144, 503-512.
[17]  Potocky′ M, Elia′sˇ M, Profotova′ B, Novotna′ Z, Valentova′ O, Z ˇ a′rsky′ V (2003) Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta. 217,122–130.
[18]  Qin G, Ma Z, Zhang L, Xing S, Hou X, Deng J, Qin G, Ma Z, Zhang L, Xing S, Hou X, Deng J (2007). Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res. 17, 249-63.
[19]  Roth MG (2004). Phosphoinositides in constitutive membrane traffic. Physiol Rev. 84,699–730.
[20]  Vermeer J, van Leeuwen W, Toben?a-Santamaria R, Laxalt A, Jones D, Divecha N, Gadella TJ, Munnik T (2006) Visualization of PtdIns3P dynamics in living plant cells. Plant J. 47, 687–700.
[21]  Voigt B, Timmers ACJ, Samaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluska F, Menzel D (2005) Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Euro J Cell Biol. 84, 609–621.
[22]  Wang CR, Yang AF, Yue GD, Gao Q, Yin HY, Zhang JR (2008). Enhanced expression of phospholipase C1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta. 227, 1127-1140.
[23]  Zhao Y, Yan A, Feijó JA, Furutani M, Takenawa T, Hwang I, Fu Y, Yang Z (2010). Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. Plant Cell. 22, 4031-44.
[24]  Zheng SZ, Liu YL, Li B, Shang ZL, Zhou RG, Sun DY (2012). Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Plant J. 69, 689-700.
[25]  Chapman LA, Goring DR (2011). Misregulation of phosphoinositides in Arabidopsis thaliana decreases pollen hydration and maternal fertility. Sex Plant Reprod, 24, 319-26.
[26]  Cheung AY, Chen CY, Tao LZ, Andreyeva T, Twell D, Wu HM (2003). Regulation of pollen tube growth by Rac-like GTPases. J Exp Bot. 54, 73-81.
[27]  de Graaf BH, Cheung AY, Andreyeva T, Levasseur K, Kieliszewski M, Wu HM (2005). Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell. 17, 2564-79.
[28]  Ding Y, Ndamukong I, Zhao Y, Xia Y, Riethoven JJ, Jones DR, Divecha N, Avramova Z (2012). Divergent Functions of the Myotubularin (MTM) Homologs AtMTM1 and AtMTM2 in Arabidopsis thaliana, Evolution of the plant MTM family. Plant J. 70, 866-78.
[29]  Dowd PE, Coursol S, Skirpan AL, Kao TH, Gilroy S (2006). Petunia phospholipase C1 is involved in pollen tube growth. Plant Cell. 18, 1438–1453.
[30]  Franklin-Tong VE, Drobak BK, Allan AC, Watkins P, Trewavas AJ (1996). Growth of pollen tubes of Papaver rhoeas is regulated by a slow moving calcium wave propagated by inositol 1,4,5- trisphosphate. Plant Cell, 8, 1305-1321.
[31]  Fujiki Y, Yoshimoto K, Ohsumi Y (2007). An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol, 143, 1132-9.
[32]  Funderburk SF, Wang QJ, Yue Z (2010). The Beclin 1-VPS34 complex–at the crossroads of autophagy and beyond. Trends Cell Biol, 20, 355-62.
[33]  Gao XQ and Zhang XS (2012), Metabolism and roles of phosphatidylinositol 3-phosphate in pollen development and pollen tube growth in Arabidopsis. Plant Signaling & Behavior 7, 1–5.
[34]  Ghars MA, Richard L, Lefebvre-De Vos D, Leprince AS, Parre E, Bordenave M, Abdelly C, Savouré A (2012). Phospholipases C and D Modulate Proline Accumulation in Thellungiella halophila/salsuginea Differently According to the Severity of Salt or Hyperosmotic Stress. Plant Cell Physiol. 53, 183-92.
[35]  Gupta R, Ting JT, Sokolov LN, Johnson SA, Luan S (2002). A tumor suppressor homolog, AtPTEN1, is essential for pollen development in Arabidopsis. Plant Cell. 14, 2495-507.
[36]  Harrison-Lowe NJ, Olsen LJ (2008). Autophagy Protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana. Autophagy. 4, 339-48.
[37]  Helling D, Possart A, Cottier S, Klahre U, Kost B (2006). Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell. 18, 3519–3534
[38]  Helsper JPFG, Heemskerk JW, Veerkamp JH (1987). Cytosolic and particulate phosphotidylinositol phospholipase C activities in pollen tubes of Lilium longiflorum. Plant Physiol. 71, 120-126.
[39]  Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1995). A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci USA. 92, 3903-3907.
[40]  Insall RH, Weiner OD (2001). PIP3, PIP2, and cell movement–similar messages, different meanings? Dev Cell. 1,743–747.
[41]  Ischebeck T, Stenzel I, Heilmann I (2008) Type B phosphatidylinositol- 4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. Plant Cell. 20, 3312–3330.
[42]  Monteiro D, Liu Q, Lisboa S, Scherer GEF, Quader H, Malho R (2005) Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+] c and membrane secretion. J Exp Bot. 56, 1665–1674.
[43]  Munnik T, Testerink C (2009). Plant phospholipid signaling, "in a nutshell". J Lipid Res. 50, Suppl:S260-5.
[44]  Munnik T, Vermeer JE (2010). Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ. 33, 655-669.
[45]  Nakamura K, Sano H (2009). A plasma-membrane linker for the phosphoinositide-specific phospholipase C in tobacco plants. Plant Signal Behav. 4, 26-29.
[46]  Shi J, Gonzales RA, Bhattacharyya MK (1995). Characterization of a plasma membrane-associated phopshinositide-specific phospholipase C from soybean. Plant Jour. 8, 381-390.
[47]  Sousa E, Kost B, Malho R (2008). Arabidopsis phosphatidylinositol- 4-monophosphate 5-kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling. Plant Cell. 20,3050– 3064.
[48]  Tasma IM, Brendel V, Whitham SA, Bhattacharyya MK (2008). Expression and evolution of the phosphoinsitide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol Biochem. 46, 627 -637.
[49]  Ul-Rehman R, Silva PA, Malhó R (2011). Localization of Arabidopsis SYP125 syntaxin in the plasma membrane sub-apical and distal zones of growing pollen tubes. Plant Signal Behav. 6, 665-70.
[50]  van Leeuwen W, Okresz L, Bogre L, Munnik T (2004) Learning the lipid language of plant signalling. Trends Plant Sci. 9, 378–384.
[51]  Wang X (2005). Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol. 139, 566–573.
[52]  Whitley P, Hinz S, Doughty J (2009). Arabidopsis FAB1/PIKfyve proteins are essential for development of viable pollen. Plant Physiol. 151, 1812-22.
[53]  Xu N, Gao XQ, Zhao XY, Zhu DZ, Zhou LZ, Zhang XS (2011). Arabidopsis AtVPS15 is essential for pollen development and germination through modulating phosphatidylinositol 3-phosphate formation. Plant Mol Biol. 77, 251-60.
[54]  Xue HW, Chen X, Mei Y (2009).Function and regulation of phospholipid signalling in plants. Biochem. J. 421, 145–156.
[55]  Yamamoto YT, Conkling MA, Sussex IM, Irish VF (1995). An Arabidopsis cDNA Related to Animal Phosphoinositide-Specific Phospholipase C Genes. Plant Physiol. 107, 1029-1030.
[56]  Yan Zhang and Sheila McCormick (2009) AGCVIII Kinases, at the Crossroads of Cellular Signaling. Trends Plant Sci. 14, 689-695.
[57]  Zhang Y, He J, Lee D, McCormick S (2010) Interdependence of endomembrane trafficking and actin dynamics during polarized growth of arabidopsis pollen tubes. Plant Physiol. 152, 2200-2210.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133