全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于有理样条死亡假设的分数时点寿险净保费责任准备金

, PP. 34-40

Keywords: 有理样条方法,分数时点,净保费责任准备金,调节参数

Full-Text   Cite this paper   Add to My Lib

Abstract:

?保险责任准备金是保险公司风险管理的重要度量指标,责任准备金的精确合理的测算,将会对保险公司的健康发展起着极其重要的作用。分数时点净保费责任准备金的测算依赖于精算假设,本文在提出一类有理样条死亡假设的基础上,研究了终身寿险的分数时点净保费责任准备金的计算问题。我们得到了其理论计算公式和上下界范围,探讨了调节参数的变化对净保费责任准备金的影响。数据分析表明:分数时点责任准备金对调节参数的变化比较敏感,目前常用的UDD假设下的责任准备金测算值恰是本文方法下的一个边界。所以基于有理样条估计方法的分数时点责任准备金测算在实务中具有很强的灵活性,对保险公司责任准备金风险管理具有重要的指导意义。

References

[1]  Neves, C.R., Migon, H.S.. Bayesian graduation of mortality rates: An application to reserve [J]. Insurance: Mathematics and Economics, 2007,40:424-434.
[2]  Young, V.R.. Equity-indexed life insurance: pricing and reserving using the principle of equivalent utility [J]. North American Actuarial Journal, 2003,7(1):68-86.
[3]  Maeceau, E., Gaillardetz, P..On life insurance reserves in a stochastic mortality and interest rates environment [J]. Insurance: Mathematics and Economics, 1999,25:261-280.
[4]  Dahl, M.. Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts [J]. Insurance: Mathematics and Economics, 2004, 35: 113-136.
[5]  Bowers, N.L., Gerber, H.H., Hickman, J.C., Jones, D.A., Nesbitt, C.J.. Actuarial mathematics [M], 2nd Edition. Society of Actuaries, Schaumburg, IL, 1997.
[6]  Jordan, C.W.. Life Contingencies(2nd Edition)[M]. Society of Actuaries, Chicago, IL, 1975.
[7]  Forfar, D., McCutcheon, J.,Wilkie, D.. On graduation by mathematical formula [J]. Journal of the Institute of Actuaries, 1988,115: 381-402.
[8]  Renshaw, A.. Actuarial graduation practice and generalized linear and non-linear models [J]. Journal of the Institute of Actuaries, 1991, 118: 295-312.
[9]  Hakerman, S.,Renshaw, A.E.. A simple Graphical Method for the comparison of two Mortality Experiences [J]. Applied stochastic Models in Business and Industry, 1999, 15: 333-352. 3.0.CO;2-B target="_blank">
[10]  Willmot, G. E.. Statistical independence and fractional age assumptions (with discussion) [J]. North American Actuarial Journal, 1997, 1(1): 84-99.
[11]  吴贤毅,王静龙,分数年龄假设与生存函数的插值[J].华东师范大学学报(自然科学版),2001,(4): 34-40.
[12]  Jones, B.L., Mereu, J.A.. A family of fractional age assumptions [J]. Insurance: Mathematics and Economics,2000, 27: 261-279.
[13]  Jones, B.L., Mereu, J.A.. A critique of fractional age assumptions [J]. Insurance: Mathematics and Economics, 2002, 30: 363-370.
[14]  Frostig, E.. Properties of the power family of fractional age approximations [J]. Insurance: Mathematics and Economics, 2003, 33: 163-171.
[15]  Zhang, Y.,Weng, C.. An application of the α-power approximation in multiple life insurance [J]. Insurance: Mathematics and Economics, 2006, 38: 98-112.
[16]  Schmidt, J.W., Hess, W.. Positivity of cubic polynomials on intervals and posotive spline interpolation[J]. BIT Numevicul Mathematies,1988,28:340-352.
[17]  杨静平. 寿险精算基础[M]. 北京: 北京大学出版社, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133