全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

股指期权定价的非参数数值方法研究

, PP. 23-29

Keywords: 连续时间模型,非参数核密度估计,窗宽,期权定价,股票指数期权

Full-Text   Cite this paper   Add to My Lib

Abstract:

?扩散过程估计的参数化方法存在先入为主的不足,并且扩散项函数形式的设定十分困难,而非参数方法不需要数据产生过程的先验信息,直接从数据出发估计扩散函数,克服了以上不足。本文提出了一种基于连续时间过程的非参数股指期权定价模型。对于刻画基础资产动态行为特性的扩散函数不加任何函数形式限制,利用离散数据匹配密度函数构造它的非参数估计,进而计算股指期权的均衡价格。论文从理论上论证了扩散项估计的一致性和渐进正态性。实证研究表明,该方法对于实际市场价格具有较高的拟合效果,特别是在市场波动剧烈时期,非参数方法更优于经典B-S方法。

References

[1]  Black, F., Scholes, M.. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, (3): 133-155.
[2]  Stanton, R.. A nonparametric models of term structure dynamics and the market price of interest rate risk[J]. Journal of Finance, 1997, LII(5):1973-2002.
[3]  Fan, J., Gijbels, I.. Local Polynomial Mode- ling and its Application[M]. Chapman and Hall in London,1996.
[4]  Simonoff, J. S.. Book review: Smoothing Methods in Statistics[M]. Springer, 1996.
[5]  Banon,G.. Nonparametric identification for diffusion processes[J]. Journal of Control and Optimization,1978,16:380-395.
[6]  Ait-Sahalia, Y.. Nonparametric pricing of interest rate derivative securities[J]. Econometrica,1996, 64,(3):527-560.
[7]  Jacod, J.. Nonparametric kernel estimation of the diffusion coefficient of a diffusion[J]. Scand. J. Statist. 2000, 27: 83-96.
[8]  Hoffmann, M.. On estimating the diffusion coefficient: Parametric versus nonparametric[J]. Ann. I.H.P-PR, 2001, 37: 339-372.
[9]  Bandi, F.M., Phillips, P.C.B.. Fully nonparametric estimation of scalar diffusion models[J]. Econometrica, 2003,71(1):241-283.
[10]  Woerner. Jeannette H.C., Variational sums and power variation: A unifying approach to model selection and estimation in semimartingale models. Working paper in University of Oxford, 2002.
[11]  李伟,韩立岩. Knight不确定条件下的模糊二叉树期权定价模型[J]. 中国管理科学,2009,17(6):9-16. 浏览
[12]  周海林,吴鑫育. 随机利率条件下的欧式期权定价[J]. 系统工程理论与实践,2011, 31(4):729-734.
[13]  区诗德,黄敢基,杨善朝. 欧式期权价值评估的非参数估计[J]. 系统工程,2006, 24(8): 47-51.
[14]  韩立岩,李伟,林忠国. 不确定环境下的期权价格上下界研究[J]. 中国管理科学,2011,19(1):1-11. 浏览
[15]  Merton, R.C.. Theory of rational option pricing[J]. Bell Journal of Economics and Manage- ment Science,1973,4:141-183.
[16]  Karlin, S., Taylor,H. M.. A Second Course in Stochastic Processes[M]. New York:Academic Press,1981.
[17]  Huang, G.H., Wan, J.P.. A nonpara metric approach for European option valuation[J]. Physica A, 2008,387: 2306-2316.
[18]  Ait-Sahalia, Y., Duarte, J.. Nonpara metric option pricing under shape Restrictions[J]. Journal of Econometrics, 2003, 116: 9-47.
[19]  Fan, J.Q., Mancini, L.. Option pricing with model-guided nonparametric methods. Working paper, 2008.
[20]  郑立新. 基于鲁棒控制的期权定价方法[J]. 管理科学学报,2000,3(3):60-64.
[21]  李淑锦. 在随机利率条件下欧式期权、美式期权的定价及其期权定价理论的应用. 浙江大学,2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133