全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

在线到移动环境下消费接受行为的演化研究:基于计算实验方法

, PP. 97-104

Keywords: 计算实验,多智能体,消费转移行为,演化

Full-Text   Cite this paper   Add to My Lib

Abstract:

?构建实证数据驱动下的多智能体计算实验平台,用于研究从在线到移动环境下消费转移行为的动态演化机理。实验结果表明,所收集的实验数据与经典扩散方程拟合程度高,说明计算模型能反映真实系统的演化过程。广告在产品/服务的市场投放初期效果明显,随着广告强度的增加,消费接受效果并非明显。当市场中出现高消费休眠时,即便采用高唤醒策略,其移动服务消费接受水平也低。当休眠率远大于唤醒率时,市场成熟期后,移动产品/服务接受量下降,而在线产品/服务接受量回升。当唤醒率远大于休眠率时,移动产品/服务接受量水平可达到最大,并维持稳定。该计算模型和实验结果能为管理者提供电子商务行为决策方面的支持。

References

[1]  林家宝, 鲁耀斌, 章淑婷. 网上至移动环境下的信任转移模型及其实证研究[J]. 南开管理评论,2010, 13(3):80-89.
[2]  Jiang Guoyin, Deng Wenjuan. An empirical analysis of factors influencing the adoption of mobile instant messaging in China[J]. International Journal of Mobile Communication,2011, 9(6):563-583.
[3]  胡知能. 创新产品市场扩散模型及其应用[D]. 成都: 四川大学, 2005.
[4]  Seihi S P. Optimal advertising policy with the contagion model[J]. Journal of Optimization Theory and Applications,1979, 29(4):615-627.
[5]  Gupta S, Jain D C, Sawhney M S. Modeling the evolution of markets with indirect network externalities: an application to digital television[J]. Marketing Science,1999, 18(3):396-416.
[6]  何佳, 曾勇. 技术创新速度对新技术购买行为的影响:两代未来创新的情况[J]. 管理科学学报,2003, 6(1):13-19.
[7]  Goldenberg J, Libai B, Muller E. Riding the saddle: How cross-market communications can create a major slump in sales[J]. Journal of Marketing,2002, 66(2):1-16.
[8]  Garber T, Goldenberg J, Libai B, et al. From density to destiny: Using spatial dimension of sales data for early prediction of new product success[J]. Marketing Science,2004, 23(3):419-428.
[9]  庄新田, 黄玮强. 基于消费者网络的金融创新扩散研究[J]. 管理科学学报,2009, 12(3):132-141.
[10]  Libai B, Muller E, Peres R. The diffusion of services[J]. Journal of Marketing Research,2009, 46(2):163-175.
[11]  吴传荣, 曾德明, 陈英武. 高技术企业技术创新网络的系统动力学建模与仿真[J]. 系统工程理论与实践,2010, 30(4):557-593.
[12]  Berger T. Agent-based spatial models applied to agriculture: A simulation tool for technology diffusion, resource use changes and policy analysis[J]. Agricultural Economics,2001, 25(2-3):245-260.
[13]  Ma T, Nakamori Y. Agent-based modeling on technological innovation as an evolutionary process[J]. European Journal of Operational Research,2005, 166(3):741-755.
[14]  Bertels K, Boman M. Agent-Based Social Simulation in Markets[J]. Electronic Commerce Research & Applications,2001, 1(1-2):149-158.
[15]  Yu Tongyang, Gong Xiaoguang, Xiao Renbin. Modelling and simulation of new product diffusion with negative appraise based on system dynamics: A comparative perspective[J]. International Journal of Computer Applications in Technology,2010, 37(3/4):268-278.
[16]  于同洋, 肖人彬, 龚晓光. 基于多智能体仿真的网游产品扩散特性研究[J]. 系统工程理论与实践,2010, 30(5):919-927.
[17]  Northwestern University. NetLogo User Manual[EB/OL]. http://ccl.northwestern.edu/netlogo/.
[18]  Mahajan V, Muller E, Bass F M. New product diffusion models in marketing: A review and directions for research[J]. The Journal of Marketing,1990, 54(1):1-26.
[19]  吴江, 胡斌, 鲁耀斌. 实证驱动信息系统的扩散与组织系统互动模拟研究[J]. 管理科学学报,2010(10):21-31.
[20]  Krishnan T V, Jain D C. Optimal dynamic advertising policy for new products[J]. Management Science,2006, 52(12):1957-1969.
[21]  Rogers E M, Olaguera N S. Diffusion of Innovations[M]. 5th ed. New York: Free Press, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133