全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ARCH-Expectile方法的VaR和ES尾部风险测量

, PP. 1-9

Keywords: Expectile,下端风险度量,线性异方差,非对称最小二乘

Full-Text   Cite this paper   Add to My Lib

Abstract:

?甄别和确定风险因素的贡献是资产或资产组合风险管理的重要研究内容。近十年,下端风险越来越受到关注,在险价值(ValueatRisk,VaR)和预期不足(ExpectedShortfall,ES)是资产组合风险管理中两个常用的风险度量工具。Kuan等[1]在一类条件自回归模型(CARE)下提出了基于expectile的VaR度量-EVaR。本文扩展了Kuan等[2]的CARE模型到带有异方差的数据,引入ARCH效应提出了一个线性ARCH-Expectile模型,旨在确定资产或资产组合的风险来源以及评估各风险因素的贡献大小,并应用expectile间接评估VaR和ES风险大小。同时给出了参数的两步估计算法,并建立了参数估计的大样本理论。最后,将本文所提出的方法应用于民生银行股票损益的风险分析,从公司基本面、市场流动性和宏观层面三个方面选取影响股票损益的风险因素,分析结果表明,各风险因素随股票极端损失大小的水平不同,其风险因素的来源及其大小和方向也是随之变化的。

References

[1]  Kuan C, Yeh J, Hsu Y. Assessing value at risk with CARE, the conditional autoregressive expectile models[J]. Journal of Econometrics, 2009, 150(2):261-270.
[2]  Artzner P, Delbaen F, Eber J, et al. Coherent measures of risk[J]. Mathematical Finance, 1999, 9(3):203-228.
[3]  Acerbi C, Tasche D. On the coherence of expected shortfall[J]. Journal of Banking and Finance, 2002(7), 26, 1487-1503.
[4]  Aigner D J, Amemiya T, Poirier D J. On the estimation of production frontiers: Maximum likelihood estimation of the parameters of a discontinuous density function[J]. International Economic Review, 1976, 17, 377-396.
[5]  Newey W K, Powell J L. Asymmetric least squares estimation and testing[J]. Econometrica. 1987, 55, 819-847.
[6]  Efron B. Regression percentiles using asymmetric squared error Loss[J]. Statistica Sinica, 1991, 1(1):93-125.
[7]  Yao, Q, Tong H. Asymmetric least squares regression and estimation: A nonparametric approach. Nonparametric Statistics, 1996, 6(2-3):273-292.
[8]  Xie S, Alan W, Zhou Y.A varying-coefficient expectile model for estimating Value at Risk[J].Journal of Business and Economic Statistics, DOI:10.1080/07350015.2014.917979, 2014.
[9]  Taylor J W. Estimation value at risk and expected shortfall using expectiles[J]. Journal of Financial Econometrics, 2008, 6(2):231-252.
[10]  Tasche D. Measuring sectoral diversification in an asymptotic multifactor framework[J]. Arxiv preprint physics/0505142, 2005.
[11]  Tasche D. Capital allocation to business units and sub-portfolios: the Euler principle[J]. Arxiv preprint arXiv:0708.2542, 2007.
[12]  Rosen D, Saunders D. Analytical methods for hedging systematic credit risk with linear factor portfolios[J]. Journal of Economic Dynamics and Control, 2009, 33(1):37-52.
[13]  Cherny A, Madan D. Coherent measurement of factor risks[J]. Arxiv preprint math/0605062, 2006.
[14]  Bonti G, Kalkbrener M, Lotz C, et al. Credit risk concentrations under stress[J]. Journal of Credit Risk, 2006, 2(3):115-136.
[15]  Rosen D, Saunders D. Risk factor contributions in portfolio credit risk models[J]. Journal of Banking and Finance, 2010, 34(2):336-349.
[16]  Manganelli S, Engle R F A comparison of value-at-risk models in finance. Frankfurt amMain:European Central Bank, 2001.
[17]  Cai T, Wang Lie. Adaptive variance function estimation in heteroscedastic nonparametric regression[J]. The Annals of Statistics, 2008, 36(5):2025-2054.
[18]  Chen Songxi, Tang Chengyong. Nonparametric inference of value at risk for dependent financial returns[J]. Journal of Financial Econometrics, 2005, 3(2):227-255.
[19]  Gourieroux C, Scaillet O, Laurent J P. Sensitivity analysis of values at risk[J]. Journal of Empirical Finance, 2000, 7(3):225-245.
[20]  Scaillet O. Nonparametric estimation and sensitivity analysis of expected shortfall[J]. Mathematical Finance, 2004, 14(1):115-129.
[21]  Chen, Songxi. Nonparametric estimation of expected shortfall[J]. Journal of Financial Econometrics, 2008, 6(1):87-107.
[22]  Diebold F X, Schuermann T, Stroghair J D. Pitfalls and opportunities in the use of extreme value theory in risk management[J]. Journal of Risk Finance 1 (Winter), 2000, 1(2):30-36.
[23]  McNeil A J, Frey R. Estiamtion of tail-related risk measures for heteroscedastic financial time series: An extreme value approach[J]. Journal of Empirical Finance, 2000, 7(3):271-300.
[24]  McNeil A J, Frey R, Embrechts P. Quantitative risk management[M]. New Jersey: Princeton University Press, 2005.
[25]  Jones M C. Expectiles and M-quantiles are quantiles[J]. Statistics and Probability Letters, 1994, 20(2):149-153.
[26]  Abdous B, Remillard B. Relating quantiles and expectiles under weighted-symmetry[J]. Annals of the Institute of Statistical Mathematics, 1995, 47(2), 371-384.
[27]  李一红, 吴世农.中国股市流动性溢价的实证研究[J].管理评论, 2003, 15(11):34-42.
[28]  吴文锋, 芮萌, 陈工孟. 中国股票收益的非流动性补偿[J]. 世界经济, 2003, (7):54-60.
[29]  汪炜, 周宇. 中国股市规模效应和时间效应的实证分析[J]. 经济研究, 2002, (10):16-21.
[30]  张祥建, 谷伟, 郭岚. 上海股票市场规模效应的实证研究及原因探析[J]. 大连理工大学学报, 2003, (4):24-28.
[31]  邵晓阳, 苏敬勤, 于圣睿. 中国A股市场规模效应实证研究[J]. 管理评论, 2004, 16(7):11-15.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133