全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于修正Russell方法的模糊决策单元的排序

, PP. 115-120

Keywords: 模糊,修正Russell方法,超效率DEA模型,全排序

Full-Text   Cite this paper   Add to My Lib

Abstract:

?文章首先建立基于修正Russell方法的超效率DEA模型,然后基于模糊数的比较,建立并求解模糊环境下的基于修正Russell方法的超效率DEA模型,从而解决了模糊决策单元的全排序问题。文末的算例将基于修正Russell方法的模糊超效率DEA模型,与基于CCR模型的模糊超效率DEA模型的结果进行了比较分析。

References

[1]  章玲, 周德群. 基于K-可加模糊测度的多属性决策分析[J]. 管理科学学报, 2008, 11(6): 18-24.
[2]  武建章, 张强. 基于2-可加模糊测度的多准则决策方法[J]. 系统工程理论与实践, 2010, 30(7): 1229-1237.
[3]  Pastor J T, Ruiz T L. An enhanced DEA Russell graph efficiency measure[J]. European Journal of Operational Research, 1999, 115(3): 596-607.
[4]  Grabisch M. The application of fuzzy integrals in multicriteria decision making[J].European Journal of Operational Research, 1996, 89(3): 445-456.
[5]  Cooper W W, Huang Zhimin. Efficiency aggregation with Russell measures in data envelopment analysis[J]. Socio-Economics planning sciences, 2006, 41(1):1-21.
[6]  Charnes A, Cooper W W. Programming with linear fractional functional[J].Naval Research Logistics Quarterly, 1962, 15:333-334.
[7]  Marichal J L. An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria[J]. IEEE Transations on Fuzzy Systems, 2000, 8(6): 800-807.
[8]  Richardson S. Over-investment of free cash flow[J]. Review of Accounting Studies, 2006, 11(2-3): 159-189.
[9]  陈信元, 陈冬华, 时旭.公司治理与现金股利——基于佛山照明的案例研究[J].管理世界, 2003, (8):118-126.
[10]  蒋东升. 内部人控制与公司的股利政策——基于宇通客车的案例分析[J].管理世界, 2009, (4):177-179.
[11]  Ramik J. Inequality relation between fuzzy numbers and its use in fuzzy optimization[J]. Fuzzy sets and systems, 1985, 16(2): 123-138.
[12]  Tan Chunqiao, Chen Xiaohong. Intuitionistic fuzzy Choquet integral operator for multi-criteria decision making[J]. Expert Systems with Applications, 2010, 37(1): 149-157.
[13]  Tanaka H. A formulation of fuzzy linear programming problem based on comparison of fuzzy numbers[J]. Control and Cybernetics, 1984, 13: 185-194.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133